Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
- Autores
- McGowan, Ed; Rosenthal, Rachel; Fiore Gartland, Andrew; Macharia, Gladys; Balinda, Sheila; Kapaata, Anne; Umviligihozo, Gisele; Muok, Erick; Dalel, Jama; Streatfield, Claire L.; Coutinho, Helen; Dilernia, Dario; Monaco, Daniela C.; Morrison, David; Yue, Ling; Hunter, Eric; Nielsen, Morten; Gilmour, Jill; Hare, Jonathan
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage.
Fil: McGowan, Ed. Imperial College London; Reino Unido
Fil: Rosenthal, Rachel. Francis Crick Institute; Reino Unido
Fil: Fiore Gartland, Andrew. Fred Hutchinson Cancer Research Cente; Estados Unidos
Fil: Macharia, Gladys. Imperial College London; Reino Unido
Fil: Balinda, Sheila. Uganda Virus Research Institute; Uganda
Fil: Kapaata, Anne. Uganda Virus Research Institute; Uganda
Fil: Umviligihozo, Gisele. Center for Family Health Research; Ruanda
Fil: Muok, Erick. Center for Family Health Research; Ruanda
Fil: Dalel, Jama. Imperial College London; Reino Unido
Fil: Streatfield, Claire L.. Imperial College London; Reino Unido
Fil: Coutinho, Helen. Imperial College London; Reino Unido
Fil: Dilernia, Dario. University of Emory; Estados Unidos
Fil: Monaco, Daniela C.. University of Emory; Estados Unidos
Fil: Morrison, David. South Walsham; Reino Unido
Fil: Yue, Ling. University of Emory; Estados Unidos
Fil: Hunter, Eric. University of Emory; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gilmour, Jill. Imperial College London; Reino Unido
Fil: Hare, Jonathan. International Aids Vaccine Initiative; Estados Unidos - Materia
-
CD8 T-CELLS
HIV
MACHINE LEARNING
T-CELL EPITOPES
VACCINES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/178451
Ver los metadatos del registro completo
id |
CONICETDig_224708ac6c6512cdfa263f01a48062bb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/178451 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV ResponseMcGowan, EdRosenthal, RachelFiore Gartland, AndrewMacharia, GladysBalinda, SheilaKapaata, AnneUmviligihozo, GiseleMuok, ErickDalel, JamaStreatfield, Claire L.Coutinho, HelenDilernia, DarioMonaco, Daniela C.Morrison, DavidYue, LingHunter, EricNielsen, MortenGilmour, JillHare, JonathanCD8 T-CELLSHIVMACHINE LEARNINGT-CELL EPITOPESVACCINEShttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage.Fil: McGowan, Ed. Imperial College London; Reino UnidoFil: Rosenthal, Rachel. Francis Crick Institute; Reino UnidoFil: Fiore Gartland, Andrew. Fred Hutchinson Cancer Research Cente; Estados UnidosFil: Macharia, Gladys. Imperial College London; Reino UnidoFil: Balinda, Sheila. Uganda Virus Research Institute; UgandaFil: Kapaata, Anne. Uganda Virus Research Institute; UgandaFil: Umviligihozo, Gisele. Center for Family Health Research; RuandaFil: Muok, Erick. Center for Family Health Research; RuandaFil: Dalel, Jama. Imperial College London; Reino UnidoFil: Streatfield, Claire L.. Imperial College London; Reino UnidoFil: Coutinho, Helen. Imperial College London; Reino UnidoFil: Dilernia, Dario. University of Emory; Estados UnidosFil: Monaco, Daniela C.. University of Emory; Estados UnidosFil: Morrison, David. South Walsham; Reino UnidoFil: Yue, Ling. University of Emory; Estados UnidosFil: Hunter, Eric. University of Emory; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gilmour, Jill. Imperial College London; Reino UnidoFil: Hare, Jonathan. International Aids Vaccine Initiative; Estados UnidosFrontiers Media2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/178451McGowan, Ed; Rosenthal, Rachel; Fiore Gartland, Andrew; Macharia, Gladys; Balinda, Sheila; et al.; Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response; Frontiers Media; Frontiers in Immunology; 12; 609884; 2-2021; 1-91664-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2021.609884info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fimmu.2021.609884/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:27Zoai:ri.conicet.gov.ar:11336/178451instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:27.8CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
title |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
spellingShingle |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response McGowan, Ed CD8 T-CELLS HIV MACHINE LEARNING T-CELL EPITOPES VACCINES |
title_short |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
title_full |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
title_fullStr |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
title_full_unstemmed |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
title_sort |
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response |
dc.creator.none.fl_str_mv |
McGowan, Ed Rosenthal, Rachel Fiore Gartland, Andrew Macharia, Gladys Balinda, Sheila Kapaata, Anne Umviligihozo, Gisele Muok, Erick Dalel, Jama Streatfield, Claire L. Coutinho, Helen Dilernia, Dario Monaco, Daniela C. Morrison, David Yue, Ling Hunter, Eric Nielsen, Morten Gilmour, Jill Hare, Jonathan |
author |
McGowan, Ed |
author_facet |
McGowan, Ed Rosenthal, Rachel Fiore Gartland, Andrew Macharia, Gladys Balinda, Sheila Kapaata, Anne Umviligihozo, Gisele Muok, Erick Dalel, Jama Streatfield, Claire L. Coutinho, Helen Dilernia, Dario Monaco, Daniela C. Morrison, David Yue, Ling Hunter, Eric Nielsen, Morten Gilmour, Jill Hare, Jonathan |
author_role |
author |
author2 |
Rosenthal, Rachel Fiore Gartland, Andrew Macharia, Gladys Balinda, Sheila Kapaata, Anne Umviligihozo, Gisele Muok, Erick Dalel, Jama Streatfield, Claire L. Coutinho, Helen Dilernia, Dario Monaco, Daniela C. Morrison, David Yue, Ling Hunter, Eric Nielsen, Morten Gilmour, Jill Hare, Jonathan |
author2_role |
author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CD8 T-CELLS HIV MACHINE LEARNING T-CELL EPITOPES VACCINES |
topic |
CD8 T-CELLS HIV MACHINE LEARNING T-CELL EPITOPES VACCINES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage. Fil: McGowan, Ed. Imperial College London; Reino Unido Fil: Rosenthal, Rachel. Francis Crick Institute; Reino Unido Fil: Fiore Gartland, Andrew. Fred Hutchinson Cancer Research Cente; Estados Unidos Fil: Macharia, Gladys. Imperial College London; Reino Unido Fil: Balinda, Sheila. Uganda Virus Research Institute; Uganda Fil: Kapaata, Anne. Uganda Virus Research Institute; Uganda Fil: Umviligihozo, Gisele. Center for Family Health Research; Ruanda Fil: Muok, Erick. Center for Family Health Research; Ruanda Fil: Dalel, Jama. Imperial College London; Reino Unido Fil: Streatfield, Claire L.. Imperial College London; Reino Unido Fil: Coutinho, Helen. Imperial College London; Reino Unido Fil: Dilernia, Dario. University of Emory; Estados Unidos Fil: Monaco, Daniela C.. University of Emory; Estados Unidos Fil: Morrison, David. South Walsham; Reino Unido Fil: Yue, Ling. University of Emory; Estados Unidos Fil: Hunter, Eric. University of Emory; Estados Unidos Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gilmour, Jill. Imperial College London; Reino Unido Fil: Hare, Jonathan. International Aids Vaccine Initiative; Estados Unidos |
description |
Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/178451 McGowan, Ed; Rosenthal, Rachel; Fiore Gartland, Andrew; Macharia, Gladys; Balinda, Sheila; et al.; Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response; Frontiers Media; Frontiers in Immunology; 12; 609884; 2-2021; 1-9 1664-3224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/178451 |
identifier_str_mv |
McGowan, Ed; Rosenthal, Rachel; Fiore Gartland, Andrew; Macharia, Gladys; Balinda, Sheila; et al.; Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response; Frontiers Media; Frontiers in Immunology; 12; 609884; 2-2021; 1-9 1664-3224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2021.609884 info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fimmu.2021.609884/full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269462739288064 |
score |
13.13397 |