Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters

Autores
Rotstein Habarnau, Yamila Valeria; Bergamasco, Pablo; Sacanell, Joaquin Gonzalo; Leyva, Gabriela; Albornoz, Cecilia; Quintero, Mariano Horacio
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T < 200 K). We obtain ∆T vs H curves, and analyze how the effect varies by changing the external pressure and the rate of the magnetic field ramp. Our results show that the optimum conditions to measure the effect are at the lower pressures (< 10−4 Torr) and faster changes of the magnetic field. However, at very high vacuum, a temperature gradient appears and makes it difficult to set the temperature properly. Also, self-heating of the sensor becomes relevant at this condition, so care must be taken in order to establish the external conditions. We have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fiting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.
Fil: Rotstein Habarnau, Yamila Valeria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Bergamasco, Pablo. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Sacanell, Joaquin Gonzalo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Leyva, Gabriela. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina
Fil: Albornoz, Cecilia. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina
Fil: Quintero, Mariano Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Magnetocalorico
Calor
DTA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/194668

id CONICETDig_21ac12dbd4d4829eefc1e89052048ae7
oai_identifier_str oai:ri.conicet.gov.ar:11336/194668
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parametersRotstein Habarnau, Yamila ValeriaBergamasco, PabloSacanell, Joaquin GonzaloLeyva, GabrielaAlbornoz, CeciliaQuintero, Mariano HoracioMagnetocaloricoCalorDTAhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T < 200 K). We obtain ∆T vs H curves, and analyze how the effect varies by changing the external pressure and the rate of the magnetic field ramp. Our results show that the optimum conditions to measure the effect are at the lower pressures (< 10−4 Torr) and faster changes of the magnetic field. However, at very high vacuum, a temperature gradient appears and makes it difficult to set the temperature properly. Also, self-heating of the sensor becomes relevant at this condition, so care must be taken in order to establish the external conditions. We have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fiting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.Fil: Rotstein Habarnau, Yamila Valeria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Bergamasco, Pablo. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Sacanell, Joaquin Gonzalo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Leyva, Gabriela. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); ArgentinaFil: Albornoz, Cecilia. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); ArgentinaFil: Quintero, Mariano Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/194668Rotstein Habarnau, Yamila Valeria; Bergamasco, Pablo; Sacanell, Joaquin Gonzalo; Leyva, Gabriela; Albornoz, Cecilia; et al.; Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters; Elsevier Science; Physica B: Condensed Matter; 407; 16; 1-2012; 3305-33070921-4526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0921452611012877info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physb.2011.12.094info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:53Zoai:ri.conicet.gov.ar:11336/194668instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:54.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
title Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
spellingShingle Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
Rotstein Habarnau, Yamila Valeria
Magnetocalorico
Calor
DTA
title_short Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
title_full Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
title_fullStr Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
title_full_unstemmed Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
title_sort Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
dc.creator.none.fl_str_mv Rotstein Habarnau, Yamila Valeria
Bergamasco, Pablo
Sacanell, Joaquin Gonzalo
Leyva, Gabriela
Albornoz, Cecilia
Quintero, Mariano Horacio
author Rotstein Habarnau, Yamila Valeria
author_facet Rotstein Habarnau, Yamila Valeria
Bergamasco, Pablo
Sacanell, Joaquin Gonzalo
Leyva, Gabriela
Albornoz, Cecilia
Quintero, Mariano Horacio
author_role author
author2 Bergamasco, Pablo
Sacanell, Joaquin Gonzalo
Leyva, Gabriela
Albornoz, Cecilia
Quintero, Mariano Horacio
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Magnetocalorico
Calor
DTA
topic Magnetocalorico
Calor
DTA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T < 200 K). We obtain ∆T vs H curves, and analyze how the effect varies by changing the external pressure and the rate of the magnetic field ramp. Our results show that the optimum conditions to measure the effect are at the lower pressures (< 10−4 Torr) and faster changes of the magnetic field. However, at very high vacuum, a temperature gradient appears and makes it difficult to set the temperature properly. Also, self-heating of the sensor becomes relevant at this condition, so care must be taken in order to establish the external conditions. We have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fiting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.
Fil: Rotstein Habarnau, Yamila Valeria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Bergamasco, Pablo. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Sacanell, Joaquin Gonzalo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Leyva, Gabriela. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina
Fil: Albornoz, Cecilia. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina
Fil: Quintero, Mariano Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T < 200 K). We obtain ∆T vs H curves, and analyze how the effect varies by changing the external pressure and the rate of the magnetic field ramp. Our results show that the optimum conditions to measure the effect are at the lower pressures (< 10−4 Torr) and faster changes of the magnetic field. However, at very high vacuum, a temperature gradient appears and makes it difficult to set the temperature properly. Also, self-heating of the sensor becomes relevant at this condition, so care must be taken in order to establish the external conditions. We have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fiting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/194668
Rotstein Habarnau, Yamila Valeria; Bergamasco, Pablo; Sacanell, Joaquin Gonzalo; Leyva, Gabriela; Albornoz, Cecilia; et al.; Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters; Elsevier Science; Physica B: Condensed Matter; 407; 16; 1-2012; 3305-3307
0921-4526
CONICET Digital
CONICET
url http://hdl.handle.net/11336/194668
identifier_str_mv Rotstein Habarnau, Yamila Valeria; Bergamasco, Pablo; Sacanell, Joaquin Gonzalo; Leyva, Gabriela; Albornoz, Cecilia; et al.; Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters; Elsevier Science; Physica B: Condensed Matter; 407; 16; 1-2012; 3305-3307
0921-4526
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0921452611012877
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physb.2011.12.094
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613838862811136
score 13.070432