On rooted directed path graphs

Autores
Tondato, Silvia Beatriz; Gutierrez, Marisa
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Ho`ang, and L´evˆeque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Ho`ang, and L´evˆeque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.
Fil: Tondato, Silvia Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
Path
Asteroidals
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55216

id CONICETDig_218c4b14e5d92b05feb052ec173b949e
oai_identifier_str oai:ri.conicet.gov.ar:11336/55216
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On rooted directed path graphsTondato, Silvia BeatrizGutierrez, MarisaPathAsteroidalshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Ho`ang, and L´evˆeque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Ho`ang, and L´evˆeque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.Fil: Tondato, Silvia Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaUnión Matemática Argentina2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55216Tondato, Silvia Beatriz; Gutierrez, Marisa; On rooted directed path graphs; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 1; 6-2016; 114-1440041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n1/v57n1a09.pdfinfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:45Zoai:ri.conicet.gov.ar:11336/55216instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:45.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On rooted directed path graphs
title On rooted directed path graphs
spellingShingle On rooted directed path graphs
Tondato, Silvia Beatriz
Path
Asteroidals
title_short On rooted directed path graphs
title_full On rooted directed path graphs
title_fullStr On rooted directed path graphs
title_full_unstemmed On rooted directed path graphs
title_sort On rooted directed path graphs
dc.creator.none.fl_str_mv Tondato, Silvia Beatriz
Gutierrez, Marisa
author Tondato, Silvia Beatriz
author_facet Tondato, Silvia Beatriz
Gutierrez, Marisa
author_role author
author2 Gutierrez, Marisa
author2_role author
dc.subject.none.fl_str_mv Path
Asteroidals
topic Path
Asteroidals
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Ho`ang, and L´evˆeque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Ho`ang, and L´evˆeque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.
Fil: Tondato, Silvia Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Ho`ang, and L´evˆeque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Ho`ang, and L´evˆeque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55216
Tondato, Silvia Beatriz; Gutierrez, Marisa; On rooted directed path graphs; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 1; 6-2016; 114-144
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55216
identifier_str_mv Tondato, Silvia Beatriz; Gutierrez, Marisa; On rooted directed path graphs; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 1; 6-2016; 114-144
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n1/v57n1a09.pdf
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268686152368128
score 13.13397