Particle classification in the LAGO water Cherenkov detectors using clustering algorithms
- Autores
- Torres Peralta, Ticiano Jorge; Molina, Maria Graciela; Otiniano, L.; Asorey, Hernán Gonzalo; Sidelnik, Iván Pedro; Taboada, A.; Mayo García, R.; Rubi Montero, A. J.; Dasso, Sergio Ricardo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Latin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics transient events. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a tool to measure the secondary particle flux reaching the ground. These secondary particles are produced during the interaction between the modulated cosmic rays flux and the atmosphere. The LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton scattering, and even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these particles depends on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusivity of the inner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the pulse shape depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the time distribution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time (∼10ns) and a longer decay time (∼70ns). In this work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sampling rate of 40 MHz and 10 bits resolution on time windows of 400ns. Here, we apply unsupervised machine learning techniques to find patterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separation. We use data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic particle separation producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of primary cosmic rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection network for onboard data analysis as an operative prototype, allowing detectors to be installed at very remote sites.
Fil: Torres Peralta, Ticiano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Otiniano, L.. Comisión Nacional de Investigación y Desarrollo Aeroespacial; Perú
Fil: Asorey, Hernán Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentina
Fil: Sidelnik, Iván Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). División Neutrones y Reactores; Argentina
Fil: Taboada, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentina
Fil: Mayo García, R.. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas;
Fil: Rubi Montero, A. J.. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas;
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
CLUSTERING
MACHINE LEARNING
OPTICS
WATER CHERENKOV DETECTOR - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224332
Ver los metadatos del registro completo
id |
CONICETDig_216ce3b23d567641b59071d3ce09d00d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224332 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithmsTorres Peralta, Ticiano JorgeMolina, Maria GracielaOtiniano, L.Asorey, Hernán GonzaloSidelnik, Iván PedroTaboada, A.Mayo García, R.Rubi Montero, A. J.Dasso, Sergio RicardoCLUSTERINGMACHINE LEARNINGOPTICSWATER CHERENKOV DETECTORhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Latin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics transient events. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a tool to measure the secondary particle flux reaching the ground. These secondary particles are produced during the interaction between the modulated cosmic rays flux and the atmosphere. The LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton scattering, and even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these particles depends on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusivity of the inner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the pulse shape depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the time distribution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time (∼10ns) and a longer decay time (∼70ns). In this work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sampling rate of 40 MHz and 10 bits resolution on time windows of 400ns. Here, we apply unsupervised machine learning techniques to find patterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separation. We use data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic particle separation producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of primary cosmic rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection network for onboard data analysis as an operative prototype, allowing detectors to be installed at very remote sites.Fil: Torres Peralta, Ticiano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Otiniano, L.. Comisión Nacional de Investigación y Desarrollo Aeroespacial; PerúFil: Asorey, Hernán Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Sidelnik, Iván Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). División Neutrones y Reactores; ArgentinaFil: Taboada, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Mayo García, R.. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas;Fil: Rubi Montero, A. J.. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas;Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaElsevier Science2023-10info:eu-repo/date/embargoEnd/2024-04-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224332Torres Peralta, Ticiano Jorge; Molina, Maria Graciela; Otiniano, L.; Asorey, Hernán Gonzalo; Sidelnik, Iván Pedro; et al.; Particle classification in the LAGO water Cherenkov detectors using clustering algorithms; Elsevier Science; Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament; 1055; 10-2023; 1-50168-9002CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0168900223005478info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nima.2023.168557info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:31Zoai:ri.conicet.gov.ar:11336/224332instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:32.066CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
title |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
spellingShingle |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms Torres Peralta, Ticiano Jorge CLUSTERING MACHINE LEARNING OPTICS WATER CHERENKOV DETECTOR |
title_short |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
title_full |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
title_fullStr |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
title_full_unstemmed |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
title_sort |
Particle classification in the LAGO water Cherenkov detectors using clustering algorithms |
dc.creator.none.fl_str_mv |
Torres Peralta, Ticiano Jorge Molina, Maria Graciela Otiniano, L. Asorey, Hernán Gonzalo Sidelnik, Iván Pedro Taboada, A. Mayo García, R. Rubi Montero, A. J. Dasso, Sergio Ricardo |
author |
Torres Peralta, Ticiano Jorge |
author_facet |
Torres Peralta, Ticiano Jorge Molina, Maria Graciela Otiniano, L. Asorey, Hernán Gonzalo Sidelnik, Iván Pedro Taboada, A. Mayo García, R. Rubi Montero, A. J. Dasso, Sergio Ricardo |
author_role |
author |
author2 |
Molina, Maria Graciela Otiniano, L. Asorey, Hernán Gonzalo Sidelnik, Iván Pedro Taboada, A. Mayo García, R. Rubi Montero, A. J. Dasso, Sergio Ricardo |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
CLUSTERING MACHINE LEARNING OPTICS WATER CHERENKOV DETECTOR |
topic |
CLUSTERING MACHINE LEARNING OPTICS WATER CHERENKOV DETECTOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Latin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics transient events. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a tool to measure the secondary particle flux reaching the ground. These secondary particles are produced during the interaction between the modulated cosmic rays flux and the atmosphere. The LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton scattering, and even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these particles depends on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusivity of the inner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the pulse shape depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the time distribution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time (∼10ns) and a longer decay time (∼70ns). In this work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sampling rate of 40 MHz and 10 bits resolution on time windows of 400ns. Here, we apply unsupervised machine learning techniques to find patterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separation. We use data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic particle separation producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of primary cosmic rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection network for onboard data analysis as an operative prototype, allowing detectors to be installed at very remote sites. Fil: Torres Peralta, Ticiano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia Fil: Otiniano, L.. Comisión Nacional de Investigación y Desarrollo Aeroespacial; Perú Fil: Asorey, Hernán Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentina Fil: Sidelnik, Iván Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). División Neutrones y Reactores; Argentina Fil: Taboada, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; Argentina Fil: Mayo García, R.. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas; Fil: Rubi Montero, A. J.. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas; Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
The Latin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics transient events. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a tool to measure the secondary particle flux reaching the ground. These secondary particles are produced during the interaction between the modulated cosmic rays flux and the atmosphere. The LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton scattering, and even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these particles depends on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusivity of the inner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the pulse shape depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the time distribution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time (∼10ns) and a longer decay time (∼70ns). In this work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sampling rate of 40 MHz and 10 bits resolution on time windows of 400ns. Here, we apply unsupervised machine learning techniques to find patterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separation. We use data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic particle separation producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of primary cosmic rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection network for onboard data analysis as an operative prototype, allowing detectors to be installed at very remote sites. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 info:eu-repo/date/embargoEnd/2024-04-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224332 Torres Peralta, Ticiano Jorge; Molina, Maria Graciela; Otiniano, L.; Asorey, Hernán Gonzalo; Sidelnik, Iván Pedro; et al.; Particle classification in the LAGO water Cherenkov detectors using clustering algorithms; Elsevier Science; Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament; 1055; 10-2023; 1-5 0168-9002 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224332 |
identifier_str_mv |
Torres Peralta, Ticiano Jorge; Molina, Maria Graciela; Otiniano, L.; Asorey, Hernán Gonzalo; Sidelnik, Iván Pedro; et al.; Particle classification in the LAGO water Cherenkov detectors using clustering algorithms; Elsevier Science; Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipament; 1055; 10-2023; 1-5 0168-9002 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0168900223005478 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nima.2023.168557 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613656019468288 |
score |
13.070432 |