A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements
- Autores
- Clementi, Luis Alberto; Vega, Jorge Ruben; Gugliotta, Luis Marcelino; Orlande, Helciio R. B.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A statistical Bayesian method is proposed for estimating the particle size distribution (PSD) of polymeric latexes from multiangle dynamic light scattering (MDLS) measurements. The procedure includes two main steps: 1) the calculation of the angle-dependent average diameters of the PSD from the MDLS autocorrelation measurements, and 2) the PSD estimation through a Bayesian method (that is solved with a Markov chain sampling strategy implemented in the form of a Metropolis-Hasting algorithm). First, the method was evaluated through two simulated examples that involved unimodal and bimodal PSDs of different shapes. Then, the method was employed for estimating two bimodal PSDs obtained by mixing two narrow polystyrene standards. For comparison, all examples were also solved by numerical inversion of the raw MDLS autocorrelation measurements through a classical constrained regularization technique. The proposed method appears as an effective and robust tool for characterizing unimodal or multimodal PSDs without requiring any a priori assumption on the number of modes or on their shapes. For unimodal PSDs exhibiting high asymmetries and for bimodal PSDs with modes of different particle concentration, the Bayesian method produced more accurate results than those obtained with classical regularization techniques.
Fil: Clementi, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina
Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Orlande, Helciio R. B.. Federal University of Rio de Janeiro; Brasil - Materia
-
Latex
Particle Size Distribution
Dynamic Light Scattering
Inverse Problem
Regularization Techniques
Bayesian Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13350
Ver los metadatos del registro completo
id |
CONICETDig_213564fcaf1f17c2a1a574352c320a8a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13350 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurementsClementi, Luis AlbertoVega, Jorge RubenGugliotta, Luis MarcelinoOrlande, Helciio R. B.LatexParticle Size DistributionDynamic Light ScatteringInverse ProblemRegularization TechniquesBayesian Methodhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2A statistical Bayesian method is proposed for estimating the particle size distribution (PSD) of polymeric latexes from multiangle dynamic light scattering (MDLS) measurements. The procedure includes two main steps: 1) the calculation of the angle-dependent average diameters of the PSD from the MDLS autocorrelation measurements, and 2) the PSD estimation through a Bayesian method (that is solved with a Markov chain sampling strategy implemented in the form of a Metropolis-Hasting algorithm). First, the method was evaluated through two simulated examples that involved unimodal and bimodal PSDs of different shapes. Then, the method was employed for estimating two bimodal PSDs obtained by mixing two narrow polystyrene standards. For comparison, all examples were also solved by numerical inversion of the raw MDLS autocorrelation measurements through a classical constrained regularization technique. The proposed method appears as an effective and robust tool for characterizing unimodal or multimodal PSDs without requiring any a priori assumption on the number of modes or on their shapes. For unimodal PSDs exhibiting high asymmetries and for bimodal PSDs with modes of different particle concentration, the Bayesian method produced more accurate results than those obtained with classical regularization techniques.Fil: Clementi, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; ArgentinaFil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; ArgentinaFil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Orlande, Helciio R. B.. Federal University of Rio de Janeiro; BrasilElsevier Science2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13350Clementi, Luis Alberto; Vega, Jorge Ruben; Gugliotta, Luis Marcelino; Orlande, Helciio R. B.; A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 107; 1; 5-2011; 165-1730169-7439enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2011.03.003info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743911000530info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:08Zoai:ri.conicet.gov.ar:11336/13350instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:08.541CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
title |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
spellingShingle |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements Clementi, Luis Alberto Latex Particle Size Distribution Dynamic Light Scattering Inverse Problem Regularization Techniques Bayesian Method |
title_short |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
title_full |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
title_fullStr |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
title_full_unstemmed |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
title_sort |
A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements |
dc.creator.none.fl_str_mv |
Clementi, Luis Alberto Vega, Jorge Ruben Gugliotta, Luis Marcelino Orlande, Helciio R. B. |
author |
Clementi, Luis Alberto |
author_facet |
Clementi, Luis Alberto Vega, Jorge Ruben Gugliotta, Luis Marcelino Orlande, Helciio R. B. |
author_role |
author |
author2 |
Vega, Jorge Ruben Gugliotta, Luis Marcelino Orlande, Helciio R. B. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Latex Particle Size Distribution Dynamic Light Scattering Inverse Problem Regularization Techniques Bayesian Method |
topic |
Latex Particle Size Distribution Dynamic Light Scattering Inverse Problem Regularization Techniques Bayesian Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A statistical Bayesian method is proposed for estimating the particle size distribution (PSD) of polymeric latexes from multiangle dynamic light scattering (MDLS) measurements. The procedure includes two main steps: 1) the calculation of the angle-dependent average diameters of the PSD from the MDLS autocorrelation measurements, and 2) the PSD estimation through a Bayesian method (that is solved with a Markov chain sampling strategy implemented in the form of a Metropolis-Hasting algorithm). First, the method was evaluated through two simulated examples that involved unimodal and bimodal PSDs of different shapes. Then, the method was employed for estimating two bimodal PSDs obtained by mixing two narrow polystyrene standards. For comparison, all examples were also solved by numerical inversion of the raw MDLS autocorrelation measurements through a classical constrained regularization technique. The proposed method appears as an effective and robust tool for characterizing unimodal or multimodal PSDs without requiring any a priori assumption on the number of modes or on their shapes. For unimodal PSDs exhibiting high asymmetries and for bimodal PSDs with modes of different particle concentration, the Bayesian method produced more accurate results than those obtained with classical regularization techniques. Fil: Clementi, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Tecnologica Nacional; Argentina Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Orlande, Helciio R. B.. Federal University of Rio de Janeiro; Brasil |
description |
A statistical Bayesian method is proposed for estimating the particle size distribution (PSD) of polymeric latexes from multiangle dynamic light scattering (MDLS) measurements. The procedure includes two main steps: 1) the calculation of the angle-dependent average diameters of the PSD from the MDLS autocorrelation measurements, and 2) the PSD estimation through a Bayesian method (that is solved with a Markov chain sampling strategy implemented in the form of a Metropolis-Hasting algorithm). First, the method was evaluated through two simulated examples that involved unimodal and bimodal PSDs of different shapes. Then, the method was employed for estimating two bimodal PSDs obtained by mixing two narrow polystyrene standards. For comparison, all examples were also solved by numerical inversion of the raw MDLS autocorrelation measurements through a classical constrained regularization technique. The proposed method appears as an effective and robust tool for characterizing unimodal or multimodal PSDs without requiring any a priori assumption on the number of modes or on their shapes. For unimodal PSDs exhibiting high asymmetries and for bimodal PSDs with modes of different particle concentration, the Bayesian method produced more accurate results than those obtained with classical regularization techniques. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13350 Clementi, Luis Alberto; Vega, Jorge Ruben; Gugliotta, Luis Marcelino; Orlande, Helciio R. B.; A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 107; 1; 5-2011; 165-173 0169-7439 |
url |
http://hdl.handle.net/11336/13350 |
identifier_str_mv |
Clementi, Luis Alberto; Vega, Jorge Ruben; Gugliotta, Luis Marcelino; Orlande, Helciio R. B.; A Bayesian inversion method for estimating the particle size distribution of latexes from multiangle dynamic light scattering measurements; Elsevier Science; Chemometrics And Intelligent Laboratory Systems; 107; 1; 5-2011; 165-173 0169-7439 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2011.03.003 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743911000530 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613884499984384 |
score |
13.070432 |