Designing Experiments to Discriminate Families of Logic Models

Autores
Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G.; Saez Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.
Fil: Videla, Santiago. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Bioquimicas de Buenos Airesfundacion Instituto Leloir. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia. Universität Potsdam. Institut für Informatik; Alemania
Fil: Konokotina, Irina. Centre National de la Recherche Scientifique; Francia
Fil: Alexopoulos, Leonidas G.. Universidad Nacional y Kapodistriaca de Atenas; Grecia
Fil: Saez Rodriguez, Julio. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido
Fil: Schaub, Torsten. Universität Potsdam. Institut für Informatik; Alemania
Fil: Siegel, Anne. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Guziolowski, Carito. Centre National de la Recherche Scientifique; Francia
Materia
Experimental design
Boolean logic models
Answer Set Programming
Signaling networks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14465

id CONICETDig_2079628563b51ebff9c8b5ceec7d207b
oai_identifier_str oai:ri.conicet.gov.ar:11336/14465
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Designing Experiments to Discriminate Families of Logic ModelsVidela, SantiagoKonokotina, IrinaAlexopoulos, Leonidas G.Saez Rodriguez, JulioSchaub, TorstenSiegel, AnneGuziolowski, CaritoExperimental designBoolean logic modelsAnswer Set ProgrammingSignaling networkshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.Fil: Videla, Santiago. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Bioquimicas de Buenos Airesfundacion Instituto Leloir. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia. Universität Potsdam. Institut für Informatik; AlemaniaFil: Konokotina, Irina. Centre National de la Recherche Scientifique; FranciaFil: Alexopoulos, Leonidas G.. Universidad Nacional y Kapodistriaca de Atenas; GreciaFil: Saez Rodriguez, Julio. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino UnidoFil: Schaub, Torsten. Universität Potsdam. Institut für Informatik; AlemaniaFil: Siegel, Anne. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Guziolowski, Carito. Centre National de la Recherche Scientifique; FranciaFrontiers Media2015-09-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14465Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G.; Saez Rodriguez, Julio; Schaub, Torsten; et al.; Designing Experiments to Discriminate Families of Logic Models; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 3; 04-9-2015; 1312296-4185enginfo:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fbioe.2015.00131/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fbioe.2015.00131info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-17T15:08:02Zoai:ri.conicet.gov.ar:11336/14465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-17 15:08:02.887CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Designing Experiments to Discriminate Families of Logic Models
title Designing Experiments to Discriminate Families of Logic Models
spellingShingle Designing Experiments to Discriminate Families of Logic Models
Videla, Santiago
Experimental design
Boolean logic models
Answer Set Programming
Signaling networks
title_short Designing Experiments to Discriminate Families of Logic Models
title_full Designing Experiments to Discriminate Families of Logic Models
title_fullStr Designing Experiments to Discriminate Families of Logic Models
title_full_unstemmed Designing Experiments to Discriminate Families of Logic Models
title_sort Designing Experiments to Discriminate Families of Logic Models
dc.creator.none.fl_str_mv Videla, Santiago
Konokotina, Irina
Alexopoulos, Leonidas G.
Saez Rodriguez, Julio
Schaub, Torsten
Siegel, Anne
Guziolowski, Carito
author Videla, Santiago
author_facet Videla, Santiago
Konokotina, Irina
Alexopoulos, Leonidas G.
Saez Rodriguez, Julio
Schaub, Torsten
Siegel, Anne
Guziolowski, Carito
author_role author
author2 Konokotina, Irina
Alexopoulos, Leonidas G.
Saez Rodriguez, Julio
Schaub, Torsten
Siegel, Anne
Guziolowski, Carito
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Experimental design
Boolean logic models
Answer Set Programming
Signaling networks
topic Experimental design
Boolean logic models
Answer Set Programming
Signaling networks
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.
Fil: Videla, Santiago. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Bioquimicas de Buenos Airesfundacion Instituto Leloir. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia. Universität Potsdam. Institut für Informatik; Alemania
Fil: Konokotina, Irina. Centre National de la Recherche Scientifique; Francia
Fil: Alexopoulos, Leonidas G.. Universidad Nacional y Kapodistriaca de Atenas; Grecia
Fil: Saez Rodriguez, Julio. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido
Fil: Schaub, Torsten. Universität Potsdam. Institut für Informatik; Alemania
Fil: Siegel, Anne. Centre National de la Recherche Scientifique; Francia. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Guziolowski, Carito. Centre National de la Recherche Scientifique; Francia
description Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14465
Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G.; Saez Rodriguez, Julio; Schaub, Torsten; et al.; Designing Experiments to Discriminate Families of Logic Models; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 3; 04-9-2015; 131
2296-4185
url http://hdl.handle.net/11336/14465
identifier_str_mv Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G.; Saez Rodriguez, Julio; Schaub, Torsten; et al.; Designing Experiments to Discriminate Families of Logic Models; Frontiers Media; Frontiers in Bioengineering and Biotechnology; 3; 04-9-2015; 131
2296-4185
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fbioe.2015.00131/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fbioe.2015.00131
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1851852774994608128
score 13.176297