Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina

Autores
Heil, Clifford W.; King, John W.; Zárate, Marcelo Arístides; Schultz, Peter H.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Much of what we know about Quaternary climate has been learned from sedimentary records from the world's oceans. With the exception of the extensive studies of the Chinese loess/paleosol sequence and more recent studies of long lake records, there are few long terrestrial climate records, particularly from the southern hemisphere. The loess record of Argentina provides an important opportunity to further our understanding of climate change from a terrestrial environment, but its complexity and discontinuity have led to difficulty in formulating a climatological model of depositional and pedogenic processes. In this study, we present one of the longest and most continuous loess/loessoid records from the central eastern Pampas of Argentina. Our age model is based on optically stimulated luminescent dates and a paleomagnetic reversal stratigraphy and indicates a basal age around 1.9 Ma. Within the age model uncertainties, we characterize the environmental magnetic properties associated with loess deposition and soil formation with respect to wind patterns, moisture availability, and temperature. Major changes in magnetic grain size are linked to a differential northward shift of the subtropical high-pressure cell during glacial periods. We suggest that coarser (finer) magnetic grains correspond to weaker (stronger) glacial periods when the high-pressure cell is located in a more southerly (northerly) position and the source region is more proximal (distal) to our study area. An abrupt increase in the ultrafine-grained magnetic material around 0.9 Ma is related to an increase in moisture transport from the South Atlantic driven by an increase in summer sea surface temperatures at the mid-Pleistocene transition (∼1 Ma). In addition to these grain size variations, there is a relative decrease in the amount of goethite compared to hematite beginning around 0.5 Ma, which has been related to the temperature increase observed after the mid-Brunhes Event (∼450 ka) in the EPICA ice core temperature record. A more detailed comparison to insolation indicates that, for portions of the record, ferrimagnetic minerals are depleted during periods of low insolation. This result suggests that Argentine loess deposition and soil formation follows a model more similar to the Alaskan loess sequences than the Chinese loess sequences. Although further work is needed to validate the models and mechanisms proposed in this study, our record indicates that the mineral magnetic properties of the loess and paleosol deposits record major changes in deposition and soil formation and provide insight into possible mechanisms relating to global and/or hemispheric climate change.
Fil: Heil, Clifford W.. University of Rhode Island; Estados Unidos
Fil: King, John W.. University of Rhode Island; Estados Unidos
Fil: Zárate, Marcelo Arístides. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Schultz, Peter H.. Brown University; Estados Unidos
Materia
Magnetic Susceptibility
Loess
Paleosols
Pampas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/81635

id CONICETDig_1fe780a46dafd8d18d7dfe9ffd58a0ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/81635
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, ArgentinaHeil, Clifford W.King, John W.Zárate, Marcelo ArístidesSchultz, Peter H.Magnetic SusceptibilityLoessPaleosolsPampashttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Much of what we know about Quaternary climate has been learned from sedimentary records from the world's oceans. With the exception of the extensive studies of the Chinese loess/paleosol sequence and more recent studies of long lake records, there are few long terrestrial climate records, particularly from the southern hemisphere. The loess record of Argentina provides an important opportunity to further our understanding of climate change from a terrestrial environment, but its complexity and discontinuity have led to difficulty in formulating a climatological model of depositional and pedogenic processes. In this study, we present one of the longest and most continuous loess/loessoid records from the central eastern Pampas of Argentina. Our age model is based on optically stimulated luminescent dates and a paleomagnetic reversal stratigraphy and indicates a basal age around 1.9 Ma. Within the age model uncertainties, we characterize the environmental magnetic properties associated with loess deposition and soil formation with respect to wind patterns, moisture availability, and temperature. Major changes in magnetic grain size are linked to a differential northward shift of the subtropical high-pressure cell during glacial periods. We suggest that coarser (finer) magnetic grains correspond to weaker (stronger) glacial periods when the high-pressure cell is located in a more southerly (northerly) position and the source region is more proximal (distal) to our study area. An abrupt increase in the ultrafine-grained magnetic material around 0.9 Ma is related to an increase in moisture transport from the South Atlantic driven by an increase in summer sea surface temperatures at the mid-Pleistocene transition (∼1 Ma). In addition to these grain size variations, there is a relative decrease in the amount of goethite compared to hematite beginning around 0.5 Ma, which has been related to the temperature increase observed after the mid-Brunhes Event (∼450 ka) in the EPICA ice core temperature record. A more detailed comparison to insolation indicates that, for portions of the record, ferrimagnetic minerals are depleted during periods of low insolation. This result suggests that Argentine loess deposition and soil formation follows a model more similar to the Alaskan loess sequences than the Chinese loess sequences. Although further work is needed to validate the models and mechanisms proposed in this study, our record indicates that the mineral magnetic properties of the loess and paleosol deposits record major changes in deposition and soil formation and provide insight into possible mechanisms relating to global and/or hemispheric climate change.Fil: Heil, Clifford W.. University of Rhode Island; Estados UnidosFil: King, John W.. University of Rhode Island; Estados UnidosFil: Zárate, Marcelo Arístides. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Schultz, Peter H.. Brown University; Estados UnidosPergamon-Elsevier Science Ltd2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81635Heil, Clifford W.; King, John W.; Zárate, Marcelo Arístides; Schultz, Peter H.; Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina; Pergamon-Elsevier Science Ltd; Quaternary Science Reviews; 29; 19-20; 9-2010; 2705-27180277-3791CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0277379110002180info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2010.06.024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:53Zoai:ri.conicet.gov.ar:11336/81635instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:54.314CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
title Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
spellingShingle Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
Heil, Clifford W.
Magnetic Susceptibility
Loess
Paleosols
Pampas
title_short Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
title_full Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
title_fullStr Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
title_full_unstemmed Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
title_sort Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina
dc.creator.none.fl_str_mv Heil, Clifford W.
King, John W.
Zárate, Marcelo Arístides
Schultz, Peter H.
author Heil, Clifford W.
author_facet Heil, Clifford W.
King, John W.
Zárate, Marcelo Arístides
Schultz, Peter H.
author_role author
author2 King, John W.
Zárate, Marcelo Arístides
Schultz, Peter H.
author2_role author
author
author
dc.subject.none.fl_str_mv Magnetic Susceptibility
Loess
Paleosols
Pampas
topic Magnetic Susceptibility
Loess
Paleosols
Pampas
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Much of what we know about Quaternary climate has been learned from sedimentary records from the world's oceans. With the exception of the extensive studies of the Chinese loess/paleosol sequence and more recent studies of long lake records, there are few long terrestrial climate records, particularly from the southern hemisphere. The loess record of Argentina provides an important opportunity to further our understanding of climate change from a terrestrial environment, but its complexity and discontinuity have led to difficulty in formulating a climatological model of depositional and pedogenic processes. In this study, we present one of the longest and most continuous loess/loessoid records from the central eastern Pampas of Argentina. Our age model is based on optically stimulated luminescent dates and a paleomagnetic reversal stratigraphy and indicates a basal age around 1.9 Ma. Within the age model uncertainties, we characterize the environmental magnetic properties associated with loess deposition and soil formation with respect to wind patterns, moisture availability, and temperature. Major changes in magnetic grain size are linked to a differential northward shift of the subtropical high-pressure cell during glacial periods. We suggest that coarser (finer) magnetic grains correspond to weaker (stronger) glacial periods when the high-pressure cell is located in a more southerly (northerly) position and the source region is more proximal (distal) to our study area. An abrupt increase in the ultrafine-grained magnetic material around 0.9 Ma is related to an increase in moisture transport from the South Atlantic driven by an increase in summer sea surface temperatures at the mid-Pleistocene transition (∼1 Ma). In addition to these grain size variations, there is a relative decrease in the amount of goethite compared to hematite beginning around 0.5 Ma, which has been related to the temperature increase observed after the mid-Brunhes Event (∼450 ka) in the EPICA ice core temperature record. A more detailed comparison to insolation indicates that, for portions of the record, ferrimagnetic minerals are depleted during periods of low insolation. This result suggests that Argentine loess deposition and soil formation follows a model more similar to the Alaskan loess sequences than the Chinese loess sequences. Although further work is needed to validate the models and mechanisms proposed in this study, our record indicates that the mineral magnetic properties of the loess and paleosol deposits record major changes in deposition and soil formation and provide insight into possible mechanisms relating to global and/or hemispheric climate change.
Fil: Heil, Clifford W.. University of Rhode Island; Estados Unidos
Fil: King, John W.. University of Rhode Island; Estados Unidos
Fil: Zárate, Marcelo Arístides. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Schultz, Peter H.. Brown University; Estados Unidos
description Much of what we know about Quaternary climate has been learned from sedimentary records from the world's oceans. With the exception of the extensive studies of the Chinese loess/paleosol sequence and more recent studies of long lake records, there are few long terrestrial climate records, particularly from the southern hemisphere. The loess record of Argentina provides an important opportunity to further our understanding of climate change from a terrestrial environment, but its complexity and discontinuity have led to difficulty in formulating a climatological model of depositional and pedogenic processes. In this study, we present one of the longest and most continuous loess/loessoid records from the central eastern Pampas of Argentina. Our age model is based on optically stimulated luminescent dates and a paleomagnetic reversal stratigraphy and indicates a basal age around 1.9 Ma. Within the age model uncertainties, we characterize the environmental magnetic properties associated with loess deposition and soil formation with respect to wind patterns, moisture availability, and temperature. Major changes in magnetic grain size are linked to a differential northward shift of the subtropical high-pressure cell during glacial periods. We suggest that coarser (finer) magnetic grains correspond to weaker (stronger) glacial periods when the high-pressure cell is located in a more southerly (northerly) position and the source region is more proximal (distal) to our study area. An abrupt increase in the ultrafine-grained magnetic material around 0.9 Ma is related to an increase in moisture transport from the South Atlantic driven by an increase in summer sea surface temperatures at the mid-Pleistocene transition (∼1 Ma). In addition to these grain size variations, there is a relative decrease in the amount of goethite compared to hematite beginning around 0.5 Ma, which has been related to the temperature increase observed after the mid-Brunhes Event (∼450 ka) in the EPICA ice core temperature record. A more detailed comparison to insolation indicates that, for portions of the record, ferrimagnetic minerals are depleted during periods of low insolation. This result suggests that Argentine loess deposition and soil formation follows a model more similar to the Alaskan loess sequences than the Chinese loess sequences. Although further work is needed to validate the models and mechanisms proposed in this study, our record indicates that the mineral magnetic properties of the loess and paleosol deposits record major changes in deposition and soil formation and provide insight into possible mechanisms relating to global and/or hemispheric climate change.
publishDate 2010
dc.date.none.fl_str_mv 2010-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/81635
Heil, Clifford W.; King, John W.; Zárate, Marcelo Arístides; Schultz, Peter H.; Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina; Pergamon-Elsevier Science Ltd; Quaternary Science Reviews; 29; 19-20; 9-2010; 2705-2718
0277-3791
CONICET Digital
CONICET
url http://hdl.handle.net/11336/81635
identifier_str_mv Heil, Clifford W.; King, John W.; Zárate, Marcelo Arístides; Schultz, Peter H.; Climatic interpretation of a 1.9 Ma environmental magnetic record of loess deposition and soil formation in the central eastern Pampas of Buenos Aires, Argentina; Pergamon-Elsevier Science Ltd; Quaternary Science Reviews; 29; 19-20; 9-2010; 2705-2718
0277-3791
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0277379110002180
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2010.06.024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269372111912960
score 13.13397