Nonlinear delayed feedback model for incompressible open cavity flow

Autores
Tuerke, F.; Lusseyran, F.; Sciamarella, Denisse; Pastur, L.; Artana, Guillermo Osvaldo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The dynamics of an oscillating shear layer when confined is enriched by retarded actions whose physical modeling is not trivial. We present a nonlinear delayed saturation feedback model, which allows us to correctly reproduce the complex shear layer spectra observed experimentally in open cavity flows in the incompressible limit. The model describes the evolution of the amplitude of the shear layer instabilities and considers two hydrodynamic feedback mechanisms directly related to the confinement introduced by the walls. One is associated with reflections of instability waves on the vertical cavity walls and the other to intracavity recirculation flow. These feedback mechanisms provide retarded actions with time lags that are used in the delay differential equation and allow the computation of the model parameters on physical grounds. The frequency components of six experimental cases in different flow regimes are well recovered by the dynamical model. The results show that the model with a single feedback mechanism produces monoperiodic oscillations of the amplitude, while the interplay of two purely hydrodynamic feedback mechanisms allow quasiperiodicity to develop.
Fil: Tuerke, F.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
Fil: Lusseyran, F.. Centre National de la Recherche Scientifique; Francia
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pastur, L.. Centre National de la Recherche Scientifique; Francia
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Cavity flow
Instabilities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/168092

id CONICETDig_1fa3ae079edf8987ad285040442c413a
oai_identifier_str oai:ri.conicet.gov.ar:11336/168092
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear delayed feedback model for incompressible open cavity flowTuerke, F.Lusseyran, F.Sciamarella, DenissePastur, L.Artana, Guillermo OsvaldoCavity flowInstabilitieshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The dynamics of an oscillating shear layer when confined is enriched by retarded actions whose physical modeling is not trivial. We present a nonlinear delayed saturation feedback model, which allows us to correctly reproduce the complex shear layer spectra observed experimentally in open cavity flows in the incompressible limit. The model describes the evolution of the amplitude of the shear layer instabilities and considers two hydrodynamic feedback mechanisms directly related to the confinement introduced by the walls. One is associated with reflections of instability waves on the vertical cavity walls and the other to intracavity recirculation flow. These feedback mechanisms provide retarded actions with time lags that are used in the delay differential equation and allow the computation of the model parameters on physical grounds. The frequency components of six experimental cases in different flow regimes are well recovered by the dynamical model. The results show that the model with a single feedback mechanism produces monoperiodic oscillations of the amplitude, while the interplay of two purely hydrodynamic feedback mechanisms allow quasiperiodicity to develop.Fil: Tuerke, F.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; ArgentinaFil: Lusseyran, F.. Centre National de la Recherche Scientifique; FranciaFil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pastur, L.. Centre National de la Recherche Scientifique; FranciaFil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168092Tuerke, F.; Lusseyran, F.; Sciamarella, Denisse; Pastur, L.; Artana, Guillermo Osvaldo; Nonlinear delayed feedback model for incompressible open cavity flow; American Physical Society; Physical Review Fluids; 5; 2; 2-2020; 1-132469-990XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.5.024401info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevFluids.5.024401info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:42Zoai:ri.conicet.gov.ar:11336/168092instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:42.814CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear delayed feedback model for incompressible open cavity flow
title Nonlinear delayed feedback model for incompressible open cavity flow
spellingShingle Nonlinear delayed feedback model for incompressible open cavity flow
Tuerke, F.
Cavity flow
Instabilities
title_short Nonlinear delayed feedback model for incompressible open cavity flow
title_full Nonlinear delayed feedback model for incompressible open cavity flow
title_fullStr Nonlinear delayed feedback model for incompressible open cavity flow
title_full_unstemmed Nonlinear delayed feedback model for incompressible open cavity flow
title_sort Nonlinear delayed feedback model for incompressible open cavity flow
dc.creator.none.fl_str_mv Tuerke, F.
Lusseyran, F.
Sciamarella, Denisse
Pastur, L.
Artana, Guillermo Osvaldo
author Tuerke, F.
author_facet Tuerke, F.
Lusseyran, F.
Sciamarella, Denisse
Pastur, L.
Artana, Guillermo Osvaldo
author_role author
author2 Lusseyran, F.
Sciamarella, Denisse
Pastur, L.
Artana, Guillermo Osvaldo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Cavity flow
Instabilities
topic Cavity flow
Instabilities
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The dynamics of an oscillating shear layer when confined is enriched by retarded actions whose physical modeling is not trivial. We present a nonlinear delayed saturation feedback model, which allows us to correctly reproduce the complex shear layer spectra observed experimentally in open cavity flows in the incompressible limit. The model describes the evolution of the amplitude of the shear layer instabilities and considers two hydrodynamic feedback mechanisms directly related to the confinement introduced by the walls. One is associated with reflections of instability waves on the vertical cavity walls and the other to intracavity recirculation flow. These feedback mechanisms provide retarded actions with time lags that are used in the delay differential equation and allow the computation of the model parameters on physical grounds. The frequency components of six experimental cases in different flow regimes are well recovered by the dynamical model. The results show that the model with a single feedback mechanism produces monoperiodic oscillations of the amplitude, while the interplay of two purely hydrodynamic feedback mechanisms allow quasiperiodicity to develop.
Fil: Tuerke, F.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
Fil: Lusseyran, F.. Centre National de la Recherche Scientifique; Francia
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pastur, L.. Centre National de la Recherche Scientifique; Francia
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The dynamics of an oscillating shear layer when confined is enriched by retarded actions whose physical modeling is not trivial. We present a nonlinear delayed saturation feedback model, which allows us to correctly reproduce the complex shear layer spectra observed experimentally in open cavity flows in the incompressible limit. The model describes the evolution of the amplitude of the shear layer instabilities and considers two hydrodynamic feedback mechanisms directly related to the confinement introduced by the walls. One is associated with reflections of instability waves on the vertical cavity walls and the other to intracavity recirculation flow. These feedback mechanisms provide retarded actions with time lags that are used in the delay differential equation and allow the computation of the model parameters on physical grounds. The frequency components of six experimental cases in different flow regimes are well recovered by the dynamical model. The results show that the model with a single feedback mechanism produces monoperiodic oscillations of the amplitude, while the interplay of two purely hydrodynamic feedback mechanisms allow quasiperiodicity to develop.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/168092
Tuerke, F.; Lusseyran, F.; Sciamarella, Denisse; Pastur, L.; Artana, Guillermo Osvaldo; Nonlinear delayed feedback model for incompressible open cavity flow; American Physical Society; Physical Review Fluids; 5; 2; 2-2020; 1-13
2469-990X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/168092
identifier_str_mv Tuerke, F.; Lusseyran, F.; Sciamarella, Denisse; Pastur, L.; Artana, Guillermo Osvaldo; Nonlinear delayed feedback model for incompressible open cavity flow; American Physical Society; Physical Review Fluids; 5; 2; 2-2020; 1-13
2469-990X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.5.024401
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevFluids.5.024401
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269048354635776
score 13.13397