Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts

Autores
Vecchietti, María Julia; Bonivardi, Adrian Lionel; Xu, Wenqian; Stacchiola, Dario; Delgado, Juan; Calatayud, Monica; Collins, Sebastián Enrique
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Reducible oxides have been shown to greatly improve the activity of water gas shift (WGS) catalysts. The precise mechanism for this effect is a matter of intense debate, but the dissociation of water is generally considered to be the key step in the reaction. We present here a study of the water activation on oxygen vacancies at the support as part of the mechanism of the WGS reaction on Pt supported on pure and gallium-doped ceria. Doping the ceria with gallium allows tuning the vacancies in the support while maintaining constant the metal dispersion. An inverse relationship was found between the catalytic activity to WGS and the amount of oxygen vacancies. In situ time-resolved X-ray diffraction, mass spectrometry, and diffuse reflectance infrared spectroscopy (DRIFT) showed that the oxygen vacancy filling by water is always fast in either Pt/CeO2 or Pt/CeGa. DFT calculation provides molecular insights to understand the pathway of water reaction with vacancies at the metal?oxide interface sites. Our results suggest that the activation of the water molecule in the WGS mechanism is not the rate-limiting step in these systems. Concentration-modulation spectroscopy in DRIFT mode under WGS reaction conditions allows the selective detection of key reaction intermediates, a monodentate formate (HCOO) and carboxylate (CO2δ−) species, which suggests the prevalence of a carboxyl (HOCO) mechanism activated at the oxide?metal interface of the catalyst.
Fil: Vecchietti, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Bonivardi, Adrian Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Xu, Wenqian. Brookhaven National Laboratory; Estados Unidos
Fil: Stacchiola, Dario. Brookhaven National Laboratory; Estados Unidos
Fil: Delgado, Juan. Universidad de Cadiz; España
Fil: Calatayud, Monica. Universite Pierre Et Marie Curie; Francia
Fil: Collins, Sebastián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Materia
Water Gas Shift
Platinum
Ceria
Reaction Mechanism
In Situ Spectroscopies
Drift
Time-Resolved X-Ray Diffraction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9254

id CONICETDig_1ecfe35842fd1ca0c998fea56176c373
oai_identifier_str oai:ri.conicet.gov.ar:11336/9254
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum CatalystsVecchietti, María JuliaBonivardi, Adrian LionelXu, WenqianStacchiola, DarioDelgado, JuanCalatayud, MonicaCollins, Sebastián EnriqueWater Gas ShiftPlatinumCeriaReaction MechanismIn Situ SpectroscopiesDriftTime-Resolved X-Ray Diffractionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Reducible oxides have been shown to greatly improve the activity of water gas shift (WGS) catalysts. The precise mechanism for this effect is a matter of intense debate, but the dissociation of water is generally considered to be the key step in the reaction. We present here a study of the water activation on oxygen vacancies at the support as part of the mechanism of the WGS reaction on Pt supported on pure and gallium-doped ceria. Doping the ceria with gallium allows tuning the vacancies in the support while maintaining constant the metal dispersion. An inverse relationship was found between the catalytic activity to WGS and the amount of oxygen vacancies. In situ time-resolved X-ray diffraction, mass spectrometry, and diffuse reflectance infrared spectroscopy (DRIFT) showed that the oxygen vacancy filling by water is always fast in either Pt/CeO2 or Pt/CeGa. DFT calculation provides molecular insights to understand the pathway of water reaction with vacancies at the metal?oxide interface sites. Our results suggest that the activation of the water molecule in the WGS mechanism is not the rate-limiting step in these systems. Concentration-modulation spectroscopy in DRIFT mode under WGS reaction conditions allows the selective detection of key reaction intermediates, a monodentate formate (HCOO) and carboxylate (CO2δ−) species, which suggests the prevalence of a carboxyl (HOCO) mechanism activated at the oxide?metal interface of the catalyst.Fil: Vecchietti, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Bonivardi, Adrian Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Xu, Wenqian. Brookhaven National Laboratory; Estados UnidosFil: Stacchiola, Dario. Brookhaven National Laboratory; Estados UnidosFil: Delgado, Juan. Universidad de Cadiz; EspañaFil: Calatayud, Monica. Universite Pierre Et Marie Curie; FranciaFil: Collins, Sebastián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaACS Publications2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9254Vecchietti, María Julia; Bonivardi, Adrian Lionel; Xu, Wenqian; Stacchiola, Dario; Delgado, Juan; et al.; Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts; ACS Publications; ACS Catalysis; 4; 6-2014; 2088-20962155-5435enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/cs500323uinfo:eu-repo/semantics/altIdentifier/doi/10.1021/cs500323uinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:40:38Zoai:ri.conicet.gov.ar:11336/9254instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:40:38.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
title Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
spellingShingle Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
Vecchietti, María Julia
Water Gas Shift
Platinum
Ceria
Reaction Mechanism
In Situ Spectroscopies
Drift
Time-Resolved X-Ray Diffraction
title_short Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
title_full Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
title_fullStr Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
title_full_unstemmed Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
title_sort Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts
dc.creator.none.fl_str_mv Vecchietti, María Julia
Bonivardi, Adrian Lionel
Xu, Wenqian
Stacchiola, Dario
Delgado, Juan
Calatayud, Monica
Collins, Sebastián Enrique
author Vecchietti, María Julia
author_facet Vecchietti, María Julia
Bonivardi, Adrian Lionel
Xu, Wenqian
Stacchiola, Dario
Delgado, Juan
Calatayud, Monica
Collins, Sebastián Enrique
author_role author
author2 Bonivardi, Adrian Lionel
Xu, Wenqian
Stacchiola, Dario
Delgado, Juan
Calatayud, Monica
Collins, Sebastián Enrique
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Water Gas Shift
Platinum
Ceria
Reaction Mechanism
In Situ Spectroscopies
Drift
Time-Resolved X-Ray Diffraction
topic Water Gas Shift
Platinum
Ceria
Reaction Mechanism
In Situ Spectroscopies
Drift
Time-Resolved X-Ray Diffraction
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Reducible oxides have been shown to greatly improve the activity of water gas shift (WGS) catalysts. The precise mechanism for this effect is a matter of intense debate, but the dissociation of water is generally considered to be the key step in the reaction. We present here a study of the water activation on oxygen vacancies at the support as part of the mechanism of the WGS reaction on Pt supported on pure and gallium-doped ceria. Doping the ceria with gallium allows tuning the vacancies in the support while maintaining constant the metal dispersion. An inverse relationship was found between the catalytic activity to WGS and the amount of oxygen vacancies. In situ time-resolved X-ray diffraction, mass spectrometry, and diffuse reflectance infrared spectroscopy (DRIFT) showed that the oxygen vacancy filling by water is always fast in either Pt/CeO2 or Pt/CeGa. DFT calculation provides molecular insights to understand the pathway of water reaction with vacancies at the metal?oxide interface sites. Our results suggest that the activation of the water molecule in the WGS mechanism is not the rate-limiting step in these systems. Concentration-modulation spectroscopy in DRIFT mode under WGS reaction conditions allows the selective detection of key reaction intermediates, a monodentate formate (HCOO) and carboxylate (CO2δ−) species, which suggests the prevalence of a carboxyl (HOCO) mechanism activated at the oxide?metal interface of the catalyst.
Fil: Vecchietti, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Bonivardi, Adrian Lionel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Xu, Wenqian. Brookhaven National Laboratory; Estados Unidos
Fil: Stacchiola, Dario. Brookhaven National Laboratory; Estados Unidos
Fil: Delgado, Juan. Universidad de Cadiz; España
Fil: Calatayud, Monica. Universite Pierre Et Marie Curie; Francia
Fil: Collins, Sebastián Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
description Reducible oxides have been shown to greatly improve the activity of water gas shift (WGS) catalysts. The precise mechanism for this effect is a matter of intense debate, but the dissociation of water is generally considered to be the key step in the reaction. We present here a study of the water activation on oxygen vacancies at the support as part of the mechanism of the WGS reaction on Pt supported on pure and gallium-doped ceria. Doping the ceria with gallium allows tuning the vacancies in the support while maintaining constant the metal dispersion. An inverse relationship was found between the catalytic activity to WGS and the amount of oxygen vacancies. In situ time-resolved X-ray diffraction, mass spectrometry, and diffuse reflectance infrared spectroscopy (DRIFT) showed that the oxygen vacancy filling by water is always fast in either Pt/CeO2 or Pt/CeGa. DFT calculation provides molecular insights to understand the pathway of water reaction with vacancies at the metal?oxide interface sites. Our results suggest that the activation of the water molecule in the WGS mechanism is not the rate-limiting step in these systems. Concentration-modulation spectroscopy in DRIFT mode under WGS reaction conditions allows the selective detection of key reaction intermediates, a monodentate formate (HCOO) and carboxylate (CO2δ−) species, which suggests the prevalence of a carboxyl (HOCO) mechanism activated at the oxide?metal interface of the catalyst.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9254
Vecchietti, María Julia; Bonivardi, Adrian Lionel; Xu, Wenqian; Stacchiola, Dario; Delgado, Juan; et al.; Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts; ACS Publications; ACS Catalysis; 4; 6-2014; 2088-2096
2155-5435
url http://hdl.handle.net/11336/9254
identifier_str_mv Vecchietti, María Julia; Bonivardi, Adrian Lionel; Xu, Wenqian; Stacchiola, Dario; Delgado, Juan; et al.; Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts; ACS Publications; ACS Catalysis; 4; 6-2014; 2088-2096
2155-5435
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/cs500323u
info:eu-repo/semantics/altIdentifier/doi/10.1021/cs500323u
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv ACS Publications
publisher.none.fl_str_mv ACS Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847978105598115840
score 13.082534