On local hamiltonian in dissipative systems

Autores
Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Gadella, Manuel. Facultad de Ciencias c. Real de Burgos; España. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Lara, Luis Pedro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Materia
Dissipative Systems
Quantum Mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22008

id CONICETDig_1e6d4d58b2f5c270d787771fe064d75b
oai_identifier_str oai:ri.conicet.gov.ar:11336/22008
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On local hamiltonian in dissipative systemsCastagnino, Mario Alberto G. J.Gadella, ManuelLara, Luis PedroDissipative SystemsQuantum Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gadella, Manuel. Facultad de Ciencias c. Real de Burgos; España. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Lara, Luis Pedro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaPergamon-Elsevier Science Ltd2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22008Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro; On local hamiltonian in dissipative systems; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 30; 3; 12-2006; 542-5510960-0779CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2006.03.094info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S096007790600292Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:09Zoai:ri.conicet.gov.ar:11336/22008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:09.672CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On local hamiltonian in dissipative systems
title On local hamiltonian in dissipative systems
spellingShingle On local hamiltonian in dissipative systems
Castagnino, Mario Alberto G. J.
Dissipative Systems
Quantum Mechanics
title_short On local hamiltonian in dissipative systems
title_full On local hamiltonian in dissipative systems
title_fullStr On local hamiltonian in dissipative systems
title_full_unstemmed On local hamiltonian in dissipative systems
title_sort On local hamiltonian in dissipative systems
dc.creator.none.fl_str_mv Castagnino, Mario Alberto G. J.
Gadella, Manuel
Lara, Luis Pedro
author Castagnino, Mario Alberto G. J.
author_facet Castagnino, Mario Alberto G. J.
Gadella, Manuel
Lara, Luis Pedro
author_role author
author2 Gadella, Manuel
Lara, Luis Pedro
author2_role author
author
dc.subject.none.fl_str_mv Dissipative Systems
Quantum Mechanics
topic Dissipative Systems
Quantum Mechanics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Gadella, Manuel. Facultad de Ciencias c. Real de Burgos; España. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Lara, Luis Pedro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
description We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22008
Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro; On local hamiltonian in dissipative systems; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 30; 3; 12-2006; 542-551
0960-0779
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22008
identifier_str_mv Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro; On local hamiltonian in dissipative systems; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 30; 3; 12-2006; 542-551
0960-0779
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2006.03.094
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S096007790600292X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614334291902464
score 13.070432