On local hamiltonian in dissipative systems
- Autores
- Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Gadella, Manuel. Facultad de Ciencias c. Real de Burgos; España. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Lara, Luis Pedro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
Dissipative Systems
Quantum Mechanics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22008
Ver los metadatos del registro completo
id |
CONICETDig_1e6d4d58b2f5c270d787771fe064d75b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22008 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On local hamiltonian in dissipative systemsCastagnino, Mario Alberto G. J.Gadella, ManuelLara, Luis PedroDissipative SystemsQuantum Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Gadella, Manuel. Facultad de Ciencias c. Real de Burgos; España. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Lara, Luis Pedro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaPergamon-Elsevier Science Ltd2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22008Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro; On local hamiltonian in dissipative systems; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 30; 3; 12-2006; 542-5510960-0779CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2006.03.094info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S096007790600292Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:09Zoai:ri.conicet.gov.ar:11336/22008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:09.672CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On local hamiltonian in dissipative systems |
title |
On local hamiltonian in dissipative systems |
spellingShingle |
On local hamiltonian in dissipative systems Castagnino, Mario Alberto G. J. Dissipative Systems Quantum Mechanics |
title_short |
On local hamiltonian in dissipative systems |
title_full |
On local hamiltonian in dissipative systems |
title_fullStr |
On local hamiltonian in dissipative systems |
title_full_unstemmed |
On local hamiltonian in dissipative systems |
title_sort |
On local hamiltonian in dissipative systems |
dc.creator.none.fl_str_mv |
Castagnino, Mario Alberto G. J. Gadella, Manuel Lara, Luis Pedro |
author |
Castagnino, Mario Alberto G. J. |
author_facet |
Castagnino, Mario Alberto G. J. Gadella, Manuel Lara, Luis Pedro |
author_role |
author |
author2 |
Gadella, Manuel Lara, Luis Pedro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dissipative Systems Quantum Mechanics |
topic |
Dissipative Systems Quantum Mechanics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions. Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Gadella, Manuel. Facultad de Ciencias c. Real de Burgos; España. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Lara, Luis Pedro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional nonHamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22008 Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro; On local hamiltonian in dissipative systems; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 30; 3; 12-2006; 542-551 0960-0779 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22008 |
identifier_str_mv |
Castagnino, Mario Alberto G. J.; Gadella, Manuel; Lara, Luis Pedro; On local hamiltonian in dissipative systems; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 30; 3; 12-2006; 542-551 0960-0779 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2006.03.094 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S096007790600292X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614334291902464 |
score |
13.070432 |