The Emergence of the Normal Distribution in Deterministic Chaotic Maps

Autores
Zanette, Damian Horacio; Samengo, Ines
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The central limit theorem states that, in the limits of a large number of terms, an appropriately scaled sum of independent random variables yields another random variable whose probability distribution tends to attain a stable distribution. The condition of independence, however, only holds in real systems as an approximation. To extend the theorem to more general situations, previous studies have derived a version of the central limit theorem that also holds for variables that are not independent. Here, we present numerical results that characterize how convergence is attained when the variables being summed are deterministically related to one another through the recurrent application of an ergodic mapping. In all the explored cases, the convergence to the limit distribution is slower than for random sampling. Yet, the speed at which convergence is attained varies substantially from system to system, and these variations imply differences in the way information about the deterministic nature of the dynamics is progressively lost as the number of summands increases. Some of the identified factors in shaping the convergence process are the strength of mixing induced by the mapping and the shape of the marginal distribution of each variable, most particularly, the presence of divergences or fat tails.
Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
STABLE DISTRIBUTIONS
DETERMINISTIC SYSTEMS
CENTRAL LIMIT THEOREM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231153

id CONICETDig_1e4b86a0a36fad0b170f04cd41db4cd5
oai_identifier_str oai:ri.conicet.gov.ar:11336/231153
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Emergence of the Normal Distribution in Deterministic Chaotic MapsZanette, Damian HoracioSamengo, InesSTABLE DISTRIBUTIONSDETERMINISTIC SYSTEMSCENTRAL LIMIT THEOREMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The central limit theorem states that, in the limits of a large number of terms, an appropriately scaled sum of independent random variables yields another random variable whose probability distribution tends to attain a stable distribution. The condition of independence, however, only holds in real systems as an approximation. To extend the theorem to more general situations, previous studies have derived a version of the central limit theorem that also holds for variables that are not independent. Here, we present numerical results that characterize how convergence is attained when the variables being summed are deterministically related to one another through the recurrent application of an ergodic mapping. In all the explored cases, the convergence to the limit distribution is slower than for random sampling. Yet, the speed at which convergence is attained varies substantially from system to system, and these variations imply differences in the way information about the deterministic nature of the dynamics is progressively lost as the number of summands increases. Some of the identified factors in shaping the convergence process are the strength of mixing induced by the mapping and the shape of the marginal distribution of each variable, most particularly, the presence of divergences or fat tails.Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMolecular Diversity Preservation International2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231153Zanette, Damian Horacio; Samengo, Ines; The Emergence of the Normal Distribution in Deterministic Chaotic Maps; Molecular Diversity Preservation International; Entropy; 26; 1; 1-2024; 1-181099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/1/51info:eu-repo/semantics/altIdentifier/doi/10.3390/e26010051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:54Zoai:ri.conicet.gov.ar:11336/231153instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:54.868CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Emergence of the Normal Distribution in Deterministic Chaotic Maps
title The Emergence of the Normal Distribution in Deterministic Chaotic Maps
spellingShingle The Emergence of the Normal Distribution in Deterministic Chaotic Maps
Zanette, Damian Horacio
STABLE DISTRIBUTIONS
DETERMINISTIC SYSTEMS
CENTRAL LIMIT THEOREM
title_short The Emergence of the Normal Distribution in Deterministic Chaotic Maps
title_full The Emergence of the Normal Distribution in Deterministic Chaotic Maps
title_fullStr The Emergence of the Normal Distribution in Deterministic Chaotic Maps
title_full_unstemmed The Emergence of the Normal Distribution in Deterministic Chaotic Maps
title_sort The Emergence of the Normal Distribution in Deterministic Chaotic Maps
dc.creator.none.fl_str_mv Zanette, Damian Horacio
Samengo, Ines
author Zanette, Damian Horacio
author_facet Zanette, Damian Horacio
Samengo, Ines
author_role author
author2 Samengo, Ines
author2_role author
dc.subject.none.fl_str_mv STABLE DISTRIBUTIONS
DETERMINISTIC SYSTEMS
CENTRAL LIMIT THEOREM
topic STABLE DISTRIBUTIONS
DETERMINISTIC SYSTEMS
CENTRAL LIMIT THEOREM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The central limit theorem states that, in the limits of a large number of terms, an appropriately scaled sum of independent random variables yields another random variable whose probability distribution tends to attain a stable distribution. The condition of independence, however, only holds in real systems as an approximation. To extend the theorem to more general situations, previous studies have derived a version of the central limit theorem that also holds for variables that are not independent. Here, we present numerical results that characterize how convergence is attained when the variables being summed are deterministically related to one another through the recurrent application of an ergodic mapping. In all the explored cases, the convergence to the limit distribution is slower than for random sampling. Yet, the speed at which convergence is attained varies substantially from system to system, and these variations imply differences in the way information about the deterministic nature of the dynamics is progressively lost as the number of summands increases. Some of the identified factors in shaping the convergence process are the strength of mixing induced by the mapping and the shape of the marginal distribution of each variable, most particularly, the presence of divergences or fat tails.
Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The central limit theorem states that, in the limits of a large number of terms, an appropriately scaled sum of independent random variables yields another random variable whose probability distribution tends to attain a stable distribution. The condition of independence, however, only holds in real systems as an approximation. To extend the theorem to more general situations, previous studies have derived a version of the central limit theorem that also holds for variables that are not independent. Here, we present numerical results that characterize how convergence is attained when the variables being summed are deterministically related to one another through the recurrent application of an ergodic mapping. In all the explored cases, the convergence to the limit distribution is slower than for random sampling. Yet, the speed at which convergence is attained varies substantially from system to system, and these variations imply differences in the way information about the deterministic nature of the dynamics is progressively lost as the number of summands increases. Some of the identified factors in shaping the convergence process are the strength of mixing induced by the mapping and the shape of the marginal distribution of each variable, most particularly, the presence of divergences or fat tails.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231153
Zanette, Damian Horacio; Samengo, Ines; The Emergence of the Normal Distribution in Deterministic Chaotic Maps; Molecular Diversity Preservation International; Entropy; 26; 1; 1-2024; 1-18
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231153
identifier_str_mv Zanette, Damian Horacio; Samengo, Ines; The Emergence of the Normal Distribution in Deterministic Chaotic Maps; Molecular Diversity Preservation International; Entropy; 26; 1; 1-2024; 1-18
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/1/51
info:eu-repo/semantics/altIdentifier/doi/10.3390/e26010051
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269933790035968
score 13.13397