Quantum control landscape for a two-level system near the quantum speed limit
- Autores
- Larocca, Martin; Poggi, Pablo Matías; Wisniacki, Diego Ariel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The core problem in optimal control theory applied to quantum systems is to determine the temporal shape of an applied field in order to maximize the expected value of some physical observable. The complexity of this procedure is given by the structural and topological features of the quantum control landscape (QCL) - i.e. the functional which maps the control field into a given value of the observable. In this work, we analyze the rich structure of the QCL in the paradigmatic Landau-Zener two-level model, and focus in particular on characterizing the QCL when the total evolution time is severely constrained. By studying several features of the optimized solutions, such as their abundance, spatial distribution and fidelities, we are able to rationalize several geometrical and topological aspects of the QCL of this simple model and identify the effects produced by different types of constraint.
Fil: Larocca, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. University of New Mexico; Estados Unidos
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
CONTROL LANDSCAPE
QUANTUM OPTIMAL CONTROL
QUANTUM SPEED LIMIT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97008
Ver los metadatos del registro completo
id |
CONICETDig_1dc7390441d7bdc0fbee29c0142495b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97008 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum control landscape for a two-level system near the quantum speed limitLarocca, MartinPoggi, Pablo MatíasWisniacki, Diego ArielCONTROL LANDSCAPEQUANTUM OPTIMAL CONTROLQUANTUM SPEED LIMIThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The core problem in optimal control theory applied to quantum systems is to determine the temporal shape of an applied field in order to maximize the expected value of some physical observable. The complexity of this procedure is given by the structural and topological features of the quantum control landscape (QCL) - i.e. the functional which maps the control field into a given value of the observable. In this work, we analyze the rich structure of the QCL in the paradigmatic Landau-Zener two-level model, and focus in particular on characterizing the QCL when the total evolution time is severely constrained. By studying several features of the optimized solutions, such as their abundance, spatial distribution and fidelities, we are able to rationalize several geometrical and topological aspects of the QCL of this simple model and identify the effects produced by different types of constraint.Fil: Larocca, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. University of New Mexico; Estados UnidosFil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaIOP Publishing2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97008Larocca, Martin; Poggi, Pablo Matías; Wisniacki, Diego Ariel; Quantum control landscape for a two-level system near the quantum speed limit; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 38; 8-2018; 1-151751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aad657/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/aad657info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:20Zoai:ri.conicet.gov.ar:11336/97008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:20.841CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum control landscape for a two-level system near the quantum speed limit |
title |
Quantum control landscape for a two-level system near the quantum speed limit |
spellingShingle |
Quantum control landscape for a two-level system near the quantum speed limit Larocca, Martin CONTROL LANDSCAPE QUANTUM OPTIMAL CONTROL QUANTUM SPEED LIMIT |
title_short |
Quantum control landscape for a two-level system near the quantum speed limit |
title_full |
Quantum control landscape for a two-level system near the quantum speed limit |
title_fullStr |
Quantum control landscape for a two-level system near the quantum speed limit |
title_full_unstemmed |
Quantum control landscape for a two-level system near the quantum speed limit |
title_sort |
Quantum control landscape for a two-level system near the quantum speed limit |
dc.creator.none.fl_str_mv |
Larocca, Martin Poggi, Pablo Matías Wisniacki, Diego Ariel |
author |
Larocca, Martin |
author_facet |
Larocca, Martin Poggi, Pablo Matías Wisniacki, Diego Ariel |
author_role |
author |
author2 |
Poggi, Pablo Matías Wisniacki, Diego Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CONTROL LANDSCAPE QUANTUM OPTIMAL CONTROL QUANTUM SPEED LIMIT |
topic |
CONTROL LANDSCAPE QUANTUM OPTIMAL CONTROL QUANTUM SPEED LIMIT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The core problem in optimal control theory applied to quantum systems is to determine the temporal shape of an applied field in order to maximize the expected value of some physical observable. The complexity of this procedure is given by the structural and topological features of the quantum control landscape (QCL) - i.e. the functional which maps the control field into a given value of the observable. In this work, we analyze the rich structure of the QCL in the paradigmatic Landau-Zener two-level model, and focus in particular on characterizing the QCL when the total evolution time is severely constrained. By studying several features of the optimized solutions, such as their abundance, spatial distribution and fidelities, we are able to rationalize several geometrical and topological aspects of the QCL of this simple model and identify the effects produced by different types of constraint. Fil: Larocca, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Poggi, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. University of New Mexico; Estados Unidos Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
The core problem in optimal control theory applied to quantum systems is to determine the temporal shape of an applied field in order to maximize the expected value of some physical observable. The complexity of this procedure is given by the structural and topological features of the quantum control landscape (QCL) - i.e. the functional which maps the control field into a given value of the observable. In this work, we analyze the rich structure of the QCL in the paradigmatic Landau-Zener two-level model, and focus in particular on characterizing the QCL when the total evolution time is severely constrained. By studying several features of the optimized solutions, such as their abundance, spatial distribution and fidelities, we are able to rationalize several geometrical and topological aspects of the QCL of this simple model and identify the effects produced by different types of constraint. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97008 Larocca, Martin; Poggi, Pablo Matías; Wisniacki, Diego Ariel; Quantum control landscape for a two-level system near the quantum speed limit; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 38; 8-2018; 1-15 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97008 |
identifier_str_mv |
Larocca, Martin; Poggi, Pablo Matías; Wisniacki, Diego Ariel; Quantum control landscape for a two-level system near the quantum speed limit; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 38; 8-2018; 1-15 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aad657/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8121/aad657 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613605600788480 |
score |
13.070432 |