Surface behavior of jojoba oil alone or in mixtures with soybean oil
- Autores
- Perillo, Maria Angelica; Maestri, Damian
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, the behavior of jojoba oil (JO), soybean oil (SBO) and JO/SBO mixtures at the air–water interface was studied. Experiments were performed by applying the Langmuir balance method. Monomolecular layers were prepared on a water subphase, which were subjected to lateral compression in a rectangular trough, using a Wilhelmy plate as a surface pressure transducer. The results showed that JO form stable and reproducible monomolecular layers at the air–water interface. The surface pressure–area isotherms showed an extremely low collapse pressure (πc) of 2.3 mN/m, a mean molecular area of 210 Å2/molecule and a compressional modulus at πc of 23 mN/m, characteristic of liquid expanded monolayers. The compression–expansion cycle exhibited an unusual hysteresis, leading to π values higher in the expansion isotherm compared to those in the compression isotherm at the same mean molecular area. This behavior was interpreted as an increase in the hydration level of the polar groups during the lateral compression, which forced it to be immersed in the subphase. This excess hydration free energy, released to the environment during the compression process, was equivalent to ΔΔG = −94 J/molecule. SBO and JO formed non-ideal mixtures, stabilized by attractive interactions at all proportions. The values of surface tension calculated for the water/monolayer interface (γw/m = 60–70 mN/m for JO content between 0 and 100%) as well as the bending energy of this interface (700 kT units for micro-emulsion particles of 20 nm radii) were extremely high compared with those needed to obtain spontaneous emulsification (0.01 mN/m). This indicated that SBO/JO/water micro-emulsion require the addition of surfactants to become thermodynamically stable.
Fil: Perillo, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Biofísica Química; Argentina
Fil: Maestri, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Química Organica; Argentina - Materia
-
Jojoba Wax
Soybean Oil
Monolecular Layers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29901
Ver los metadatos del registro completo
id |
CONICETDig_1d98dbfbf3f31aa78dc243501bd24b72 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29901 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Surface behavior of jojoba oil alone or in mixtures with soybean oilPerillo, Maria AngelicaMaestri, DamianJojoba WaxSoybean OilMonolecular Layershttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In the present work, the behavior of jojoba oil (JO), soybean oil (SBO) and JO/SBO mixtures at the air–water interface was studied. Experiments were performed by applying the Langmuir balance method. Monomolecular layers were prepared on a water subphase, which were subjected to lateral compression in a rectangular trough, using a Wilhelmy plate as a surface pressure transducer. The results showed that JO form stable and reproducible monomolecular layers at the air–water interface. The surface pressure–area isotherms showed an extremely low collapse pressure (πc) of 2.3 mN/m, a mean molecular area of 210 Å2/molecule and a compressional modulus at πc of 23 mN/m, characteristic of liquid expanded monolayers. The compression–expansion cycle exhibited an unusual hysteresis, leading to π values higher in the expansion isotherm compared to those in the compression isotherm at the same mean molecular area. This behavior was interpreted as an increase in the hydration level of the polar groups during the lateral compression, which forced it to be immersed in the subphase. This excess hydration free energy, released to the environment during the compression process, was equivalent to ΔΔG = −94 J/molecule. SBO and JO formed non-ideal mixtures, stabilized by attractive interactions at all proportions. The values of surface tension calculated for the water/monolayer interface (γw/m = 60–70 mN/m for JO content between 0 and 100%) as well as the bending energy of this interface (700 kT units for micro-emulsion particles of 20 nm radii) were extremely high compared with those needed to obtain spontaneous emulsification (0.01 mN/m). This indicated that SBO/JO/water micro-emulsion require the addition of surfactants to become thermodynamically stable.Fil: Perillo, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Biofísica Química; ArgentinaFil: Maestri, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Química Organica; ArgentinaElsevier Science2005-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29901Perillo, Maria Angelica; Maestri, Damian; Surface behavior of jojoba oil alone or in mixtures with soybean oil; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 256; 2-3; 4-2005; 199-2050927-7757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092777570500004Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfa.2004.12.050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:01Zoai:ri.conicet.gov.ar:11336/29901instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:02.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
title |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
spellingShingle |
Surface behavior of jojoba oil alone or in mixtures with soybean oil Perillo, Maria Angelica Jojoba Wax Soybean Oil Monolecular Layers |
title_short |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
title_full |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
title_fullStr |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
title_full_unstemmed |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
title_sort |
Surface behavior of jojoba oil alone or in mixtures with soybean oil |
dc.creator.none.fl_str_mv |
Perillo, Maria Angelica Maestri, Damian |
author |
Perillo, Maria Angelica |
author_facet |
Perillo, Maria Angelica Maestri, Damian |
author_role |
author |
author2 |
Maestri, Damian |
author2_role |
author |
dc.subject.none.fl_str_mv |
Jojoba Wax Soybean Oil Monolecular Layers |
topic |
Jojoba Wax Soybean Oil Monolecular Layers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present work, the behavior of jojoba oil (JO), soybean oil (SBO) and JO/SBO mixtures at the air–water interface was studied. Experiments were performed by applying the Langmuir balance method. Monomolecular layers were prepared on a water subphase, which were subjected to lateral compression in a rectangular trough, using a Wilhelmy plate as a surface pressure transducer. The results showed that JO form stable and reproducible monomolecular layers at the air–water interface. The surface pressure–area isotherms showed an extremely low collapse pressure (πc) of 2.3 mN/m, a mean molecular area of 210 Å2/molecule and a compressional modulus at πc of 23 mN/m, characteristic of liquid expanded monolayers. The compression–expansion cycle exhibited an unusual hysteresis, leading to π values higher in the expansion isotherm compared to those in the compression isotherm at the same mean molecular area. This behavior was interpreted as an increase in the hydration level of the polar groups during the lateral compression, which forced it to be immersed in the subphase. This excess hydration free energy, released to the environment during the compression process, was equivalent to ΔΔG = −94 J/molecule. SBO and JO formed non-ideal mixtures, stabilized by attractive interactions at all proportions. The values of surface tension calculated for the water/monolayer interface (γw/m = 60–70 mN/m for JO content between 0 and 100%) as well as the bending energy of this interface (700 kT units for micro-emulsion particles of 20 nm radii) were extremely high compared with those needed to obtain spontaneous emulsification (0.01 mN/m). This indicated that SBO/JO/water micro-emulsion require the addition of surfactants to become thermodynamically stable. Fil: Perillo, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Biofísica Química; Argentina Fil: Maestri, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Química Organica; Argentina |
description |
In the present work, the behavior of jojoba oil (JO), soybean oil (SBO) and JO/SBO mixtures at the air–water interface was studied. Experiments were performed by applying the Langmuir balance method. Monomolecular layers were prepared on a water subphase, which were subjected to lateral compression in a rectangular trough, using a Wilhelmy plate as a surface pressure transducer. The results showed that JO form stable and reproducible monomolecular layers at the air–water interface. The surface pressure–area isotherms showed an extremely low collapse pressure (πc) of 2.3 mN/m, a mean molecular area of 210 Å2/molecule and a compressional modulus at πc of 23 mN/m, characteristic of liquid expanded monolayers. The compression–expansion cycle exhibited an unusual hysteresis, leading to π values higher in the expansion isotherm compared to those in the compression isotherm at the same mean molecular area. This behavior was interpreted as an increase in the hydration level of the polar groups during the lateral compression, which forced it to be immersed in the subphase. This excess hydration free energy, released to the environment during the compression process, was equivalent to ΔΔG = −94 J/molecule. SBO and JO formed non-ideal mixtures, stabilized by attractive interactions at all proportions. The values of surface tension calculated for the water/monolayer interface (γw/m = 60–70 mN/m for JO content between 0 and 100%) as well as the bending energy of this interface (700 kT units for micro-emulsion particles of 20 nm radii) were extremely high compared with those needed to obtain spontaneous emulsification (0.01 mN/m). This indicated that SBO/JO/water micro-emulsion require the addition of surfactants to become thermodynamically stable. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29901 Perillo, Maria Angelica; Maestri, Damian; Surface behavior of jojoba oil alone or in mixtures with soybean oil; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 256; 2-3; 4-2005; 199-205 0927-7757 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29901 |
identifier_str_mv |
Perillo, Maria Angelica; Maestri, Damian; Surface behavior of jojoba oil alone or in mixtures with soybean oil; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 256; 2-3; 4-2005; 199-205 0927-7757 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092777570500004X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfa.2004.12.050 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269131391369216 |
score |
13.13397 |