Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
- Autores
- Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution.
Fil: Soderholm, Joshua S.. Universitat Bonn; Alemania
Fil: Kumjian, Matthew R.. State University of Pennsylvania; Estados Unidos
Fil: McCarthy, Nicholas. University of Queensland; Australia
Fil: Maldonado, Paula Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Wang, Minzheng. Northraine Pty. Ltd.; Australia - Materia
-
HAIL SIZE DISTRIBUTION
PHOTOGRAMMETRY
RELAMPAGO - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143889
Ver los metadatos del registro completo
id |
CONICETDig_1d8c3ad87f00dd2b513d4b46fa072254 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143889 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetrySoderholm, Joshua S.Kumjian, Matthew R.McCarthy, NicholasMaldonado, Paula SoledadWang, MinzhengHAIL SIZE DISTRIBUTIONPHOTOGRAMMETRYRELAMPAGOhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution.Fil: Soderholm, Joshua S.. Universitat Bonn; AlemaniaFil: Kumjian, Matthew R.. State University of Pennsylvania; Estados UnidosFil: McCarthy, Nicholas. University of Queensland; AustraliaFil: Maldonado, Paula Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Wang, Minzheng. Northraine Pty. Ltd.; AustraliaCopernicus Publications2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143889Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng; Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry; Copernicus Publications; Atmospheric Measurement Techniques; 13; 2; 2-2020; 747-7541867-13811867-8548CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5194/amt-13-747-2020info:eu-repo/semantics/altIdentifier/url/https://amt.copernicus.org/articles/13/747/2020/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:42Zoai:ri.conicet.gov.ar:11336/143889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:43.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
title |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
spellingShingle |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry Soderholm, Joshua S. HAIL SIZE DISTRIBUTION PHOTOGRAMMETRY RELAMPAGO |
title_short |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
title_full |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
title_fullStr |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
title_full_unstemmed |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
title_sort |
Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry |
dc.creator.none.fl_str_mv |
Soderholm, Joshua S. Kumjian, Matthew R. McCarthy, Nicholas Maldonado, Paula Soledad Wang, Minzheng |
author |
Soderholm, Joshua S. |
author_facet |
Soderholm, Joshua S. Kumjian, Matthew R. McCarthy, Nicholas Maldonado, Paula Soledad Wang, Minzheng |
author_role |
author |
author2 |
Kumjian, Matthew R. McCarthy, Nicholas Maldonado, Paula Soledad Wang, Minzheng |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
HAIL SIZE DISTRIBUTION PHOTOGRAMMETRY RELAMPAGO |
topic |
HAIL SIZE DISTRIBUTION PHOTOGRAMMETRY RELAMPAGO |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution. Fil: Soderholm, Joshua S.. Universitat Bonn; Alemania Fil: Kumjian, Matthew R.. State University of Pennsylvania; Estados Unidos Fil: McCarthy, Nicholas. University of Queensland; Australia Fil: Maldonado, Paula Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Wang, Minzheng. Northraine Pty. Ltd.; Australia |
description |
A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143889 Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng; Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry; Copernicus Publications; Atmospheric Measurement Techniques; 13; 2; 2-2020; 747-754 1867-1381 1867-8548 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143889 |
identifier_str_mv |
Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng; Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry; Copernicus Publications; Atmospheric Measurement Techniques; 13; 2; 2-2020; 747-754 1867-1381 1867-8548 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5194/amt-13-747-2020 info:eu-repo/semantics/altIdentifier/url/https://amt.copernicus.org/articles/13/747/2020/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614114517712896 |
score |
13.070432 |