Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry

Autores
Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution.
Fil: Soderholm, Joshua S.. Universitat Bonn; Alemania
Fil: Kumjian, Matthew R.. State University of Pennsylvania; Estados Unidos
Fil: McCarthy, Nicholas. University of Queensland; Australia
Fil: Maldonado, Paula Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Wang, Minzheng. Northraine Pty. Ltd.; Australia
Materia
HAIL SIZE DISTRIBUTION
PHOTOGRAMMETRY
RELAMPAGO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143889

id CONICETDig_1d8c3ad87f00dd2b513d4b46fa072254
oai_identifier_str oai:ri.conicet.gov.ar:11336/143889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantifying hail size distributions from the sky - Application of drone aerial photogrammetrySoderholm, Joshua S.Kumjian, Matthew R.McCarthy, NicholasMaldonado, Paula SoledadWang, MinzhengHAIL SIZE DISTRIBUTIONPHOTOGRAMMETRYRELAMPAGOhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution.Fil: Soderholm, Joshua S.. Universitat Bonn; AlemaniaFil: Kumjian, Matthew R.. State University of Pennsylvania; Estados UnidosFil: McCarthy, Nicholas. University of Queensland; AustraliaFil: Maldonado, Paula Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Wang, Minzheng. Northraine Pty. Ltd.; AustraliaCopernicus Publications2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143889Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng; Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry; Copernicus Publications; Atmospheric Measurement Techniques; 13; 2; 2-2020; 747-7541867-13811867-8548CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5194/amt-13-747-2020info:eu-repo/semantics/altIdentifier/url/https://amt.copernicus.org/articles/13/747/2020/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:42Zoai:ri.conicet.gov.ar:11336/143889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:43.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
title Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
spellingShingle Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
Soderholm, Joshua S.
HAIL SIZE DISTRIBUTION
PHOTOGRAMMETRY
RELAMPAGO
title_short Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
title_full Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
title_fullStr Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
title_full_unstemmed Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
title_sort Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry
dc.creator.none.fl_str_mv Soderholm, Joshua S.
Kumjian, Matthew R.
McCarthy, Nicholas
Maldonado, Paula Soledad
Wang, Minzheng
author Soderholm, Joshua S.
author_facet Soderholm, Joshua S.
Kumjian, Matthew R.
McCarthy, Nicholas
Maldonado, Paula Soledad
Wang, Minzheng
author_role author
author2 Kumjian, Matthew R.
McCarthy, Nicholas
Maldonado, Paula Soledad
Wang, Minzheng
author2_role author
author
author
author
dc.subject.none.fl_str_mv HAIL SIZE DISTRIBUTION
PHOTOGRAMMETRY
RELAMPAGO
topic HAIL SIZE DISTRIBUTION
PHOTOGRAMMETRY
RELAMPAGO
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution.
Fil: Soderholm, Joshua S.. Universitat Bonn; Alemania
Fil: Kumjian, Matthew R.. State University of Pennsylvania; Estados Unidos
Fil: McCarthy, Nicholas. University of Queensland; Australia
Fil: Maldonado, Paula Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Wang, Minzheng. Northraine Pty. Ltd.; Australia
description A new technique, named "HailPixel", is introduced for measuring the maximum dimension and intermediate dimension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hailstones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is several orders of magnitude larger (e.g. 10 000 or more hailstones) than population sizes from existing sensors (e.g. a hail pad). Comparison with a co-located hail pad for an Argentinian hailstorm event during the RELAMPAGO project demonstrates the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribution. When hail fall is sparse, such as during large and giant hail events, the large survey area of this technique is especially advantageous for resolving the hail size distribution.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143889
Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng; Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry; Copernicus Publications; Atmospheric Measurement Techniques; 13; 2; 2-2020; 747-754
1867-1381
1867-8548
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143889
identifier_str_mv Soderholm, Joshua S.; Kumjian, Matthew R.; McCarthy, Nicholas; Maldonado, Paula Soledad; Wang, Minzheng; Quantifying hail size distributions from the sky - Application of drone aerial photogrammetry; Copernicus Publications; Atmospheric Measurement Techniques; 13; 2; 2-2020; 747-754
1867-1381
1867-8548
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5194/amt-13-747-2020
info:eu-repo/semantics/altIdentifier/url/https://amt.copernicus.org/articles/13/747/2020/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Copernicus Publications
publisher.none.fl_str_mv Copernicus Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614114517712896
score 13.070432