Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes
- Autores
- de Mier, Manuel; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Patrizio, Luisina; Rodríguez, Facundo; Romero Stefani, Mauro
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper we investigate the performance of five causality-detection methods and how their results can be aggregated when multiple units are considered in a panel data setting. The aggregation procedure employs voting rules for determining which causal paths are identified for the sample population. Using simulated and real-world panel data, we show the performance of these methods in detecting the correct causal paths in comparison to a benchmark that comprises a standard representation of growth processes as ground truth model. We find that the results may be better when only simulated, instead of real-world, data are analyzed. While this may suggest that the methods presented here are currently incapable of detecting causal links, it is plausible that the ground ``truth'' may incorporate false relations.
Fil: de Mier, Manuel. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Patrizio, Luisina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Rodríguez, Facundo. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Romero Stefani, Mauro. Universidad Nacional del Sur. Departamento de Economía; Argentina
LVIII Reunión Anual de la Asociación Argentina de Economía Política
Mendoza
Argentina
Asociación Argentina de Economía Política - Materia
-
GRANGER CAUSALITY
TRANSFER ENTROPY
STOCHASTIC CAUSALITY
LiNGAM
GROUND TRUTH
ECONOMIC GROWTH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238345
Ver los metadatos del registro completo
id |
CONICETDig_1d21e3c7a7b5369bc098fded6f37a912 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238345 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processesde Mier, ManuelDelbianco, Fernando AndrésTohmé, Fernando AbelPatrizio, LuisinaRodríguez, FacundoRomero Stefani, MauroGRANGER CAUSALITYTRANSFER ENTROPYSTOCHASTIC CAUSALITYLiNGAMGROUND TRUTHECONOMIC GROWTHhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5In this paper we investigate the performance of five causality-detection methods and how their results can be aggregated when multiple units are considered in a panel data setting. The aggregation procedure employs voting rules for determining which causal paths are identified for the sample population. Using simulated and real-world panel data, we show the performance of these methods in detecting the correct causal paths in comparison to a benchmark that comprises a standard representation of growth processes as ground truth model. We find that the results may be better when only simulated, instead of real-world, data are analyzed. While this may suggest that the methods presented here are currently incapable of detecting causal links, it is plausible that the ground ``truth'' may incorporate false relations.Fil: de Mier, Manuel. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Patrizio, Luisina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Rodríguez, Facundo. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Romero Stefani, Mauro. Universidad Nacional del Sur. Departamento de Economía; ArgentinaLVIII Reunión Anual de la Asociación Argentina de Economía PolíticaMendozaArgentinaAsociación Argentina de Economía PolíticaAsociación Argentina de Economía Política2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238345Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes; LVIII Reunión Anual de la Asociación Argentina de Economía Política; Mendoza; Argentina; 2023; 1-19CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aaep.org.ar/?p=7124Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:00Zoai:ri.conicet.gov.ar:11336/238345instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:00.423CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
title |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
spellingShingle |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes de Mier, Manuel GRANGER CAUSALITY TRANSFER ENTROPY STOCHASTIC CAUSALITY LiNGAM GROUND TRUTH ECONOMIC GROWTH |
title_short |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
title_full |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
title_fullStr |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
title_full_unstemmed |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
title_sort |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes |
dc.creator.none.fl_str_mv |
de Mier, Manuel Delbianco, Fernando Andrés Tohmé, Fernando Abel Patrizio, Luisina Rodríguez, Facundo Romero Stefani, Mauro |
author |
de Mier, Manuel |
author_facet |
de Mier, Manuel Delbianco, Fernando Andrés Tohmé, Fernando Abel Patrizio, Luisina Rodríguez, Facundo Romero Stefani, Mauro |
author_role |
author |
author2 |
Delbianco, Fernando Andrés Tohmé, Fernando Abel Patrizio, Luisina Rodríguez, Facundo Romero Stefani, Mauro |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
GRANGER CAUSALITY TRANSFER ENTROPY STOCHASTIC CAUSALITY LiNGAM GROUND TRUTH ECONOMIC GROWTH |
topic |
GRANGER CAUSALITY TRANSFER ENTROPY STOCHASTIC CAUSALITY LiNGAM GROUND TRUTH ECONOMIC GROWTH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
In this paper we investigate the performance of five causality-detection methods and how their results can be aggregated when multiple units are considered in a panel data setting. The aggregation procedure employs voting rules for determining which causal paths are identified for the sample population. Using simulated and real-world panel data, we show the performance of these methods in detecting the correct causal paths in comparison to a benchmark that comprises a standard representation of growth processes as ground truth model. We find that the results may be better when only simulated, instead of real-world, data are analyzed. While this may suggest that the methods presented here are currently incapable of detecting causal links, it is plausible that the ground ``truth'' may incorporate false relations. Fil: de Mier, Manuel. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Patrizio, Luisina. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Rodríguez, Facundo. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Romero Stefani, Mauro. Universidad Nacional del Sur. Departamento de Economía; Argentina LVIII Reunión Anual de la Asociación Argentina de Economía Política Mendoza Argentina Asociación Argentina de Economía Política |
description |
In this paper we investigate the performance of five causality-detection methods and how their results can be aggregated when multiple units are considered in a panel data setting. The aggregation procedure employs voting rules for determining which causal paths are identified for the sample population. Using simulated and real-world panel data, we show the performance of these methods in detecting the correct causal paths in comparison to a benchmark that comprises a standard representation of growth processes as ground truth model. We find that the results may be better when only simulated, instead of real-world, data are analyzed. While this may suggest that the methods presented here are currently incapable of detecting causal links, it is plausible that the ground ``truth'' may incorporate false relations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238345 Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes; LVIII Reunión Anual de la Asociación Argentina de Economía Política; Mendoza; Argentina; 2023; 1-19 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/238345 |
identifier_str_mv |
Causality by Vote: Aggregating Evidence on Causal Relations in Economic Growth Processes; LVIII Reunión Anual de la Asociación Argentina de Economía Política; Mendoza; Argentina; 2023; 1-19 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aaep.org.ar/?p=7124 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Economía Política |
publisher.none.fl_str_mv |
Asociación Argentina de Economía Política |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613903245377536 |
score |
13.070432 |