Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model
- Autores
- Silva, Iacyel G.; Rosso, Osvaldo Aníbal; Vermelho, Marcos V. D.; Lyra, Marcelo L.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We numerically investigate the ghost stochastic resonance phenomenon induced by a power-law distributed noise in the neuron FitzHugh–Nagumo model. The input noise considered is produced by a Langevin process including both multiplicative and additive Gaussian noise sources. In this process, the power-law decay exponent of the resulting noise distribution is governed by the off-set of the multiplicative noise, thus allowing us to probe both regimes of Gaussian and strongly non-Gaussian noises. Ghost stochastic resonance, i.e., stochastic resonance in a missing fundamental harmonic, occurs in this model. Deviations from the Gaussianity of the input noise are shown to reduce both the additive noise intensity corresponding to the optimal identification of the missing fundamental as well as the number of firing events at the ghost stochastic resonance condition.
Fil: Silva, Iacyel G.. Universidade Federal de Alagoas; Brasil
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vermelho, Marcos V. D.. Universidade Federal de Alagoas; Brasil
Fil: Lyra, Marcelo L.. Universidade Federal de Alagoas; Brasil - Materia
-
Stochastic Resonance
Ghost Resonance
Power-Law Noise
Neuron Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41561
Ver los metadatos del registro completo
id |
CONICETDig_1ca515c3aa0080eac713f12d22642a98 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41561 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron modelSilva, Iacyel G.Rosso, Osvaldo AníbalVermelho, Marcos V. D.Lyra, Marcelo L.Stochastic ResonanceGhost ResonancePower-Law NoiseNeuron Modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We numerically investigate the ghost stochastic resonance phenomenon induced by a power-law distributed noise in the neuron FitzHugh–Nagumo model. The input noise considered is produced by a Langevin process including both multiplicative and additive Gaussian noise sources. In this process, the power-law decay exponent of the resulting noise distribution is governed by the off-set of the multiplicative noise, thus allowing us to probe both regimes of Gaussian and strongly non-Gaussian noises. Ghost stochastic resonance, i.e., stochastic resonance in a missing fundamental harmonic, occurs in this model. Deviations from the Gaussianity of the input noise are shown to reduce both the additive noise intensity corresponding to the optimal identification of the missing fundamental as well as the number of firing events at the ghost stochastic resonance condition.Fil: Silva, Iacyel G.. Universidade Federal de Alagoas; BrasilFil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vermelho, Marcos V. D.. Universidade Federal de Alagoas; BrasilFil: Lyra, Marcelo L.. Universidade Federal de Alagoas; BrasilElsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41561Silva, Iacyel G.; Rosso, Osvaldo Aníbal; Vermelho, Marcos V. D.; Lyra, Marcelo L.; Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 22; 5-2015; 641-6491007-5704CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cnsns.2014.06.050info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S100757041400313Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:37Zoai:ri.conicet.gov.ar:11336/41561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:37.837CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
title |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
spellingShingle |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model Silva, Iacyel G. Stochastic Resonance Ghost Resonance Power-Law Noise Neuron Model |
title_short |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
title_full |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
title_fullStr |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
title_full_unstemmed |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
title_sort |
Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model |
dc.creator.none.fl_str_mv |
Silva, Iacyel G. Rosso, Osvaldo Aníbal Vermelho, Marcos V. D. Lyra, Marcelo L. |
author |
Silva, Iacyel G. |
author_facet |
Silva, Iacyel G. Rosso, Osvaldo Aníbal Vermelho, Marcos V. D. Lyra, Marcelo L. |
author_role |
author |
author2 |
Rosso, Osvaldo Aníbal Vermelho, Marcos V. D. Lyra, Marcelo L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Stochastic Resonance Ghost Resonance Power-Law Noise Neuron Model |
topic |
Stochastic Resonance Ghost Resonance Power-Law Noise Neuron Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We numerically investigate the ghost stochastic resonance phenomenon induced by a power-law distributed noise in the neuron FitzHugh–Nagumo model. The input noise considered is produced by a Langevin process including both multiplicative and additive Gaussian noise sources. In this process, the power-law decay exponent of the resulting noise distribution is governed by the off-set of the multiplicative noise, thus allowing us to probe both regimes of Gaussian and strongly non-Gaussian noises. Ghost stochastic resonance, i.e., stochastic resonance in a missing fundamental harmonic, occurs in this model. Deviations from the Gaussianity of the input noise are shown to reduce both the additive noise intensity corresponding to the optimal identification of the missing fundamental as well as the number of firing events at the ghost stochastic resonance condition. Fil: Silva, Iacyel G.. Universidade Federal de Alagoas; Brasil Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vermelho, Marcos V. D.. Universidade Federal de Alagoas; Brasil Fil: Lyra, Marcelo L.. Universidade Federal de Alagoas; Brasil |
description |
We numerically investigate the ghost stochastic resonance phenomenon induced by a power-law distributed noise in the neuron FitzHugh–Nagumo model. The input noise considered is produced by a Langevin process including both multiplicative and additive Gaussian noise sources. In this process, the power-law decay exponent of the resulting noise distribution is governed by the off-set of the multiplicative noise, thus allowing us to probe both regimes of Gaussian and strongly non-Gaussian noises. Ghost stochastic resonance, i.e., stochastic resonance in a missing fundamental harmonic, occurs in this model. Deviations from the Gaussianity of the input noise are shown to reduce both the additive noise intensity corresponding to the optimal identification of the missing fundamental as well as the number of firing events at the ghost stochastic resonance condition. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41561 Silva, Iacyel G.; Rosso, Osvaldo Aníbal; Vermelho, Marcos V. D.; Lyra, Marcelo L.; Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 22; 5-2015; 641-649 1007-5704 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41561 |
identifier_str_mv |
Silva, Iacyel G.; Rosso, Osvaldo Aníbal; Vermelho, Marcos V. D.; Lyra, Marcelo L.; Ghost stochastic resonance induced by a power-law distributed noise in the FitzHugh?Nagumo neuron model; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 22; 5-2015; 641-649 1007-5704 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cnsns.2014.06.050 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S100757041400313X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268932640079872 |
score |
13.13397 |