Modeled grid cells aligned by a flexible attractor
- Autores
- Benas, Sabrina Soledad; Fernández, Ximena Laura; Kropff, Emilio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the position of the animal within an environment. Grid maps of cells belonging to the same module share spacing and orientation, only differing in relative two-dimensional spatial phase, which could result from being interconnected by a two-dimensional attractor. However, this architecture has the drawbacks of being complex to construct and rigid, allowing no deviations from the hexagonal pattern such as the ones observed under a variety of experimental manipulations. Here we show that a simpler one-dimensional attractor is enough to align grid cells equally well. Using topological data analysis, we show that the resulting population activity is a sample of a torus, while the ensemble of maps preserves features of the network architecture. The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representation manifold with the feedforward inputs, rather than imposing it. More generally, our results represent a proof of principle against the intuition that the architecture and the representation manifold of an attractor are the same topological object, with implications to the study of attractor networks across the brain.
Fil: Benas, Sabrina Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina - Materia
-
GRID CELLS
ENTORIHNAL CORTEX
NAVIGATION
ATTRACTOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/237088
Ver los metadatos del registro completo
id |
CONICETDig_1c76447f2706d8ac68bc6fc38186b757 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/237088 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeled grid cells aligned by a flexible attractorBenas, Sabrina SoledadFernández, Ximena LauraKropff, EmilioGRID CELLSENTORIHNAL CORTEXNAVIGATIONATTRACTORhttps://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the position of the animal within an environment. Grid maps of cells belonging to the same module share spacing and orientation, only differing in relative two-dimensional spatial phase, which could result from being interconnected by a two-dimensional attractor. However, this architecture has the drawbacks of being complex to construct and rigid, allowing no deviations from the hexagonal pattern such as the ones observed under a variety of experimental manipulations. Here we show that a simpler one-dimensional attractor is enough to align grid cells equally well. Using topological data analysis, we show that the resulting population activity is a sample of a torus, while the ensemble of maps preserves features of the network architecture. The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representation manifold with the feedforward inputs, rather than imposing it. More generally, our results represent a proof of principle against the intuition that the architecture and the representation manifold of an attractor are the same topological object, with implications to the study of attractor networks across the brain.Fil: Benas, Sabrina Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaeLife Sciences Publications2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/237088Benas, Sabrina Soledad; Fernández, Ximena Laura; Kropff, Emilio; Modeled grid cells aligned by a flexible attractor; eLife Sciences Publications; eLife; 9-2023; 1-442050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/reviewed-preprints/89851info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:38:30Zoai:ri.conicet.gov.ar:11336/237088instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:38:30.616CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeled grid cells aligned by a flexible attractor |
title |
Modeled grid cells aligned by a flexible attractor |
spellingShingle |
Modeled grid cells aligned by a flexible attractor Benas, Sabrina Soledad GRID CELLS ENTORIHNAL CORTEX NAVIGATION ATTRACTOR |
title_short |
Modeled grid cells aligned by a flexible attractor |
title_full |
Modeled grid cells aligned by a flexible attractor |
title_fullStr |
Modeled grid cells aligned by a flexible attractor |
title_full_unstemmed |
Modeled grid cells aligned by a flexible attractor |
title_sort |
Modeled grid cells aligned by a flexible attractor |
dc.creator.none.fl_str_mv |
Benas, Sabrina Soledad Fernández, Ximena Laura Kropff, Emilio |
author |
Benas, Sabrina Soledad |
author_facet |
Benas, Sabrina Soledad Fernández, Ximena Laura Kropff, Emilio |
author_role |
author |
author2 |
Fernández, Ximena Laura Kropff, Emilio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GRID CELLS ENTORIHNAL CORTEX NAVIGATION ATTRACTOR |
topic |
GRID CELLS ENTORIHNAL CORTEX NAVIGATION ATTRACTOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the position of the animal within an environment. Grid maps of cells belonging to the same module share spacing and orientation, only differing in relative two-dimensional spatial phase, which could result from being interconnected by a two-dimensional attractor. However, this architecture has the drawbacks of being complex to construct and rigid, allowing no deviations from the hexagonal pattern such as the ones observed under a variety of experimental manipulations. Here we show that a simpler one-dimensional attractor is enough to align grid cells equally well. Using topological data analysis, we show that the resulting population activity is a sample of a torus, while the ensemble of maps preserves features of the network architecture. The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representation manifold with the feedforward inputs, rather than imposing it. More generally, our results represent a proof of principle against the intuition that the architecture and the representation manifold of an attractor are the same topological object, with implications to the study of attractor networks across the brain. Fil: Benas, Sabrina Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina |
description |
Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the position of the animal within an environment. Grid maps of cells belonging to the same module share spacing and orientation, only differing in relative two-dimensional spatial phase, which could result from being interconnected by a two-dimensional attractor. However, this architecture has the drawbacks of being complex to construct and rigid, allowing no deviations from the hexagonal pattern such as the ones observed under a variety of experimental manipulations. Here we show that a simpler one-dimensional attractor is enough to align grid cells equally well. Using topological data analysis, we show that the resulting population activity is a sample of a torus, while the ensemble of maps preserves features of the network architecture. The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representation manifold with the feedforward inputs, rather than imposing it. More generally, our results represent a proof of principle against the intuition that the architecture and the representation manifold of an attractor are the same topological object, with implications to the study of attractor networks across the brain. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/237088 Benas, Sabrina Soledad; Fernández, Ximena Laura; Kropff, Emilio; Modeled grid cells aligned by a flexible attractor; eLife Sciences Publications; eLife; 9-2023; 1-44 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/237088 |
identifier_str_mv |
Benas, Sabrina Soledad; Fernández, Ximena Laura; Kropff, Emilio; Modeled grid cells aligned by a flexible attractor; eLife Sciences Publications; eLife; 9-2023; 1-44 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/reviewed-preprints/89851 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife Sciences Publications |
publisher.none.fl_str_mv |
eLife Sciences Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082864330833920 |
score |
13.22299 |