From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy

Autores
Civitarese, Enrique Osvaldo; Orsaria, Milva Gabriela; Penacchioni, Ana Virginia
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The composition and physical state of dark matter remain among the most pressing unresolved questions in modern physics. Addressing these questions is crucial to our understanding of the Universe’s structure. In this work, we explore the hypothesis that massive scalar bosons, such as axions, constitute the majority of dark matter. We focus on two key aspects of axion physics: (i) the role of axion–neutrino coupling in generating neutrino mass and (ii) the thermodynamic properties of axion dark matter. We propose that the interaction between neutrinos and axions in the early Universe, prior to hadronic formation, could provide a mechanism for finite neutrino masses. Furthermore, to account for the observed large-scale distribution of dark matter, we extend the Bose–Einstein condensation framework and derive the critical temperature T$_c$ that defines the onset of the condensate phase. Our calculations suggest that this temperature ranges from a few 10$^{−3}$ degrees Kelvin to approximately one Kelvin, depending on the axion scale factor f$_a$. These findings support the plausibility of axions as viable dark matter candidates and emphasize the importance of future experimental searches for axion–neutrino interactions. Additional astrophysical and laboratory investigations could further refine axion mass constraints and shed light on the role of axion condensates in the evolution of the early Universe.
Fil: Civitarese, Enrique Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Orsaria, Milva Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Penacchioni, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
dark matter
axions
neutral pseudoscalars
Bose-Einstein condensate
neutrino-axion couplings
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266746

id CONICETDig_1c704ba11c47df108aadb5a7220d3282
oai_identifier_str oai:ri.conicet.gov.ar:11336/266746
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass HierarchyCivitarese, Enrique OsvaldoOrsaria, Milva GabrielaPenacchioni, Ana Virginiadark matteraxionsneutral pseudoscalarsBose-Einstein condensateneutrino-axion couplingshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The composition and physical state of dark matter remain among the most pressing unresolved questions in modern physics. Addressing these questions is crucial to our understanding of the Universe’s structure. In this work, we explore the hypothesis that massive scalar bosons, such as axions, constitute the majority of dark matter. We focus on two key aspects of axion physics: (i) the role of axion–neutrino coupling in generating neutrino mass and (ii) the thermodynamic properties of axion dark matter. We propose that the interaction between neutrinos and axions in the early Universe, prior to hadronic formation, could provide a mechanism for finite neutrino masses. Furthermore, to account for the observed large-scale distribution of dark matter, we extend the Bose–Einstein condensation framework and derive the critical temperature T$_c$ that defines the onset of the condensate phase. Our calculations suggest that this temperature ranges from a few 10$^{−3}$ degrees Kelvin to approximately one Kelvin, depending on the axion scale factor f$_a$. These findings support the plausibility of axions as viable dark matter candidates and emphasize the importance of future experimental searches for axion–neutrino interactions. Additional astrophysical and laboratory investigations could further refine axion mass constraints and shed light on the role of axion condensates in the evolution of the early Universe.Fil: Civitarese, Enrique Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Orsaria, Milva Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Penacchioni, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaMDPI2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266746Civitarese, Enrique Osvaldo; Orsaria, Milva Gabriela; Penacchioni, Ana Virginia; From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy; MDPI; Symmetry; 17; 5; 4-2025; 1-152073-8994CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/17/5/680info:eu-repo/semantics/altIdentifier/doi/10.3390/sym17050680info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:11:16Zoai:ri.conicet.gov.ar:11336/266746instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:11:16.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
title From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
spellingShingle From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
Civitarese, Enrique Osvaldo
dark matter
axions
neutral pseudoscalars
Bose-Einstein condensate
neutrino-axion couplings
title_short From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
title_full From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
title_fullStr From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
title_full_unstemmed From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
title_sort From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
dc.creator.none.fl_str_mv Civitarese, Enrique Osvaldo
Orsaria, Milva Gabriela
Penacchioni, Ana Virginia
author Civitarese, Enrique Osvaldo
author_facet Civitarese, Enrique Osvaldo
Orsaria, Milva Gabriela
Penacchioni, Ana Virginia
author_role author
author2 Orsaria, Milva Gabriela
Penacchioni, Ana Virginia
author2_role author
author
dc.subject.none.fl_str_mv dark matter
axions
neutral pseudoscalars
Bose-Einstein condensate
neutrino-axion couplings
topic dark matter
axions
neutral pseudoscalars
Bose-Einstein condensate
neutrino-axion couplings
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The composition and physical state of dark matter remain among the most pressing unresolved questions in modern physics. Addressing these questions is crucial to our understanding of the Universe’s structure. In this work, we explore the hypothesis that massive scalar bosons, such as axions, constitute the majority of dark matter. We focus on two key aspects of axion physics: (i) the role of axion–neutrino coupling in generating neutrino mass and (ii) the thermodynamic properties of axion dark matter. We propose that the interaction between neutrinos and axions in the early Universe, prior to hadronic formation, could provide a mechanism for finite neutrino masses. Furthermore, to account for the observed large-scale distribution of dark matter, we extend the Bose–Einstein condensation framework and derive the critical temperature T$_c$ that defines the onset of the condensate phase. Our calculations suggest that this temperature ranges from a few 10$^{−3}$ degrees Kelvin to approximately one Kelvin, depending on the axion scale factor f$_a$. These findings support the plausibility of axions as viable dark matter candidates and emphasize the importance of future experimental searches for axion–neutrino interactions. Additional astrophysical and laboratory investigations could further refine axion mass constraints and shed light on the role of axion condensates in the evolution of the early Universe.
Fil: Civitarese, Enrique Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Orsaria, Milva Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Penacchioni, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description The composition and physical state of dark matter remain among the most pressing unresolved questions in modern physics. Addressing these questions is crucial to our understanding of the Universe’s structure. In this work, we explore the hypothesis that massive scalar bosons, such as axions, constitute the majority of dark matter. We focus on two key aspects of axion physics: (i) the role of axion–neutrino coupling in generating neutrino mass and (ii) the thermodynamic properties of axion dark matter. We propose that the interaction between neutrinos and axions in the early Universe, prior to hadronic formation, could provide a mechanism for finite neutrino masses. Furthermore, to account for the observed large-scale distribution of dark matter, we extend the Bose–Einstein condensation framework and derive the critical temperature T$_c$ that defines the onset of the condensate phase. Our calculations suggest that this temperature ranges from a few 10$^{−3}$ degrees Kelvin to approximately one Kelvin, depending on the axion scale factor f$_a$. These findings support the plausibility of axions as viable dark matter candidates and emphasize the importance of future experimental searches for axion–neutrino interactions. Additional astrophysical and laboratory investigations could further refine axion mass constraints and shed light on the role of axion condensates in the evolution of the early Universe.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266746
Civitarese, Enrique Osvaldo; Orsaria, Milva Gabriela; Penacchioni, Ana Virginia; From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy; MDPI; Symmetry; 17; 5; 4-2025; 1-15
2073-8994
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266746
identifier_str_mv Civitarese, Enrique Osvaldo; Orsaria, Milva Gabriela; Penacchioni, Ana Virginia; From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy; MDPI; Symmetry; 17; 5; 4-2025; 1-15
2073-8994
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/17/5/680
info:eu-repo/semantics/altIdentifier/doi/10.3390/sym17050680
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781487587786752
score 12.982451