Functional determinants of radial operators in AdS 2

Autores
Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.
Fil: Aguilera Damia, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Faraggi, Alberto. Universidad Andrés Bello; Chile
Fil: Zayas, Leopoldo Pando. University of Michigan; Estados Unidos. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Rathee, Vimal. University of Michigan; Estados Unidos
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. The Abdus Salam. International Centre for Theoretical Physics; Italia
Materia
1/N EXPANSION
ADS-CFT CORRESPONDENCE
SUPERSYMMETRIC GAUGE THEORY
WILSON
’T HOOFT AND POLYAKOV LOOPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100887

id CONICETDig_1b46f416d713c021db05122a01f6b480
oai_identifier_str oai:ri.conicet.gov.ar:11336/100887
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Functional determinants of radial operators in AdS 2Aguilera Damia, JeremíasFaraggi, AlbertoZayas, Leopoldo PandoRathee, VimalSilva, Guillermo Ariel1/N EXPANSIONADS-CFT CORRESPONDENCESUPERSYMMETRIC GAUGE THEORYWILSON’T HOOFT AND POLYAKOV LOOPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.Fil: Aguilera Damia, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Faraggi, Alberto. Universidad Andrés Bello; ChileFil: Zayas, Leopoldo Pando. University of Michigan; Estados Unidos. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Rathee, Vimal. University of Michigan; Estados UnidosFil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. The Abdus Salam. International Centre for Theoretical Physics; ItaliaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100887Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel; Functional determinants of radial operators in AdS 2; Springer; Journal of High Energy Physics; 2018; 6; 6-2018; 1-401126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP06%282018%29007info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2018)007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:17:30Zoai:ri.conicet.gov.ar:11336/100887instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:17:30.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Functional determinants of radial operators in AdS 2
title Functional determinants of radial operators in AdS 2
spellingShingle Functional determinants of radial operators in AdS 2
Aguilera Damia, Jeremías
1/N EXPANSION
ADS-CFT CORRESPONDENCE
SUPERSYMMETRIC GAUGE THEORY
WILSON
’T HOOFT AND POLYAKOV LOOPS
title_short Functional determinants of radial operators in AdS 2
title_full Functional determinants of radial operators in AdS 2
title_fullStr Functional determinants of radial operators in AdS 2
title_full_unstemmed Functional determinants of radial operators in AdS 2
title_sort Functional determinants of radial operators in AdS 2
dc.creator.none.fl_str_mv Aguilera Damia, Jeremías
Faraggi, Alberto
Zayas, Leopoldo Pando
Rathee, Vimal
Silva, Guillermo Ariel
author Aguilera Damia, Jeremías
author_facet Aguilera Damia, Jeremías
Faraggi, Alberto
Zayas, Leopoldo Pando
Rathee, Vimal
Silva, Guillermo Ariel
author_role author
author2 Faraggi, Alberto
Zayas, Leopoldo Pando
Rathee, Vimal
Silva, Guillermo Ariel
author2_role author
author
author
author
dc.subject.none.fl_str_mv 1/N EXPANSION
ADS-CFT CORRESPONDENCE
SUPERSYMMETRIC GAUGE THEORY
WILSON
’T HOOFT AND POLYAKOV LOOPS
topic 1/N EXPANSION
ADS-CFT CORRESPONDENCE
SUPERSYMMETRIC GAUGE THEORY
WILSON
’T HOOFT AND POLYAKOV LOOPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.
Fil: Aguilera Damia, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Faraggi, Alberto. Universidad Andrés Bello; Chile
Fil: Zayas, Leopoldo Pando. University of Michigan; Estados Unidos. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Rathee, Vimal. University of Michigan; Estados Unidos
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. The Abdus Salam. International Centre for Theoretical Physics; Italia
description We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100887
Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel; Functional determinants of radial operators in AdS 2; Springer; Journal of High Energy Physics; 2018; 6; 6-2018; 1-40
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100887
identifier_str_mv Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel; Functional determinants of radial operators in AdS 2; Springer; Journal of High Energy Physics; 2018; 6; 6-2018; 1-40
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP06%282018%29007
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2018)007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083323917500416
score 13.22299