Functional determinants of radial operators in AdS 2
- Autores
- Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.
Fil: Aguilera Damia, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Faraggi, Alberto. Universidad Andrés Bello; Chile
Fil: Zayas, Leopoldo Pando. University of Michigan; Estados Unidos. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Rathee, Vimal. University of Michigan; Estados Unidos
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. The Abdus Salam. International Centre for Theoretical Physics; Italia - Materia
-
1/N EXPANSION
ADS-CFT CORRESPONDENCE
SUPERSYMMETRIC GAUGE THEORY
WILSON
’T HOOFT AND POLYAKOV LOOPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100887
Ver los metadatos del registro completo
id |
CONICETDig_1b46f416d713c021db05122a01f6b480 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100887 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Functional determinants of radial operators in AdS 2Aguilera Damia, JeremíasFaraggi, AlbertoZayas, Leopoldo PandoRathee, VimalSilva, Guillermo Ariel1/N EXPANSIONADS-CFT CORRESPONDENCESUPERSYMMETRIC GAUGE THEORYWILSON’T HOOFT AND POLYAKOV LOOPShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.Fil: Aguilera Damia, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Faraggi, Alberto. Universidad Andrés Bello; ChileFil: Zayas, Leopoldo Pando. University of Michigan; Estados Unidos. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Rathee, Vimal. University of Michigan; Estados UnidosFil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. The Abdus Salam. International Centre for Theoretical Physics; ItaliaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100887Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel; Functional determinants of radial operators in AdS 2; Springer; Journal of High Energy Physics; 2018; 6; 6-2018; 1-401126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP06%282018%29007info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2018)007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:17:30Zoai:ri.conicet.gov.ar:11336/100887instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:17:30.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Functional determinants of radial operators in AdS 2 |
title |
Functional determinants of radial operators in AdS 2 |
spellingShingle |
Functional determinants of radial operators in AdS 2 Aguilera Damia, Jeremías 1/N EXPANSION ADS-CFT CORRESPONDENCE SUPERSYMMETRIC GAUGE THEORY WILSON ’T HOOFT AND POLYAKOV LOOPS |
title_short |
Functional determinants of radial operators in AdS 2 |
title_full |
Functional determinants of radial operators in AdS 2 |
title_fullStr |
Functional determinants of radial operators in AdS 2 |
title_full_unstemmed |
Functional determinants of radial operators in AdS 2 |
title_sort |
Functional determinants of radial operators in AdS 2 |
dc.creator.none.fl_str_mv |
Aguilera Damia, Jeremías Faraggi, Alberto Zayas, Leopoldo Pando Rathee, Vimal Silva, Guillermo Ariel |
author |
Aguilera Damia, Jeremías |
author_facet |
Aguilera Damia, Jeremías Faraggi, Alberto Zayas, Leopoldo Pando Rathee, Vimal Silva, Guillermo Ariel |
author_role |
author |
author2 |
Faraggi, Alberto Zayas, Leopoldo Pando Rathee, Vimal Silva, Guillermo Ariel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
1/N EXPANSION ADS-CFT CORRESPONDENCE SUPERSYMMETRIC GAUGE THEORY WILSON ’T HOOFT AND POLYAKOV LOOPS |
topic |
1/N EXPANSION ADS-CFT CORRESPONDENCE SUPERSYMMETRIC GAUGE THEORY WILSON ’T HOOFT AND POLYAKOV LOOPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop. Fil: Aguilera Damia, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Faraggi, Alberto. Universidad Andrés Bello; Chile Fil: Zayas, Leopoldo Pando. University of Michigan; Estados Unidos. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Rathee, Vimal. University of Michigan; Estados Unidos Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. The Abdus Salam. International Centre for Theoretical Physics; Italia |
description |
We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100887 Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel; Functional determinants of radial operators in AdS 2; Springer; Journal of High Energy Physics; 2018; 6; 6-2018; 1-40 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100887 |
identifier_str_mv |
Aguilera Damia, Jeremías; Faraggi, Alberto; Zayas, Leopoldo Pando; Rathee, Vimal; Silva, Guillermo Ariel; Functional determinants of radial operators in AdS 2; Springer; Journal of High Energy Physics; 2018; 6; 6-2018; 1-40 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP06%282018%29007 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2018)007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083323917500416 |
score |
13.22299 |