An ontology-based framework to support intelligent data analysis of sensor measurements
- Autores
- Roda, Fernando; Musulin, Estanislao
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditions
Fil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Intelligent Data Analysis
Temporal Abstraction
Temporal Reasoning
Ontology
Semantic Sensor Web
Description Logic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29715
Ver los metadatos del registro completo
id |
CONICETDig_1adb90a223370fae385be88e83744c86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29715 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An ontology-based framework to support intelligent data analysis of sensor measurementsRoda, FernandoMusulin, EstanislaoIntelligent Data AnalysisTemporal AbstractionTemporal ReasoningOntologySemantic Sensor WebDescription Logichttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditionsFil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaPergamon-Elsevier Science Ltd.2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29715Roda, Fernando; Musulin, Estanislao; An ontology-based framework to support intelligent data analysis of sensor measurements; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 17; 12-2014; 7914-79260957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.06.033info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414003741info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:20Zoai:ri.conicet.gov.ar:11336/29715instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:20.444CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An ontology-based framework to support intelligent data analysis of sensor measurements |
title |
An ontology-based framework to support intelligent data analysis of sensor measurements |
spellingShingle |
An ontology-based framework to support intelligent data analysis of sensor measurements Roda, Fernando Intelligent Data Analysis Temporal Abstraction Temporal Reasoning Ontology Semantic Sensor Web Description Logic |
title_short |
An ontology-based framework to support intelligent data analysis of sensor measurements |
title_full |
An ontology-based framework to support intelligent data analysis of sensor measurements |
title_fullStr |
An ontology-based framework to support intelligent data analysis of sensor measurements |
title_full_unstemmed |
An ontology-based framework to support intelligent data analysis of sensor measurements |
title_sort |
An ontology-based framework to support intelligent data analysis of sensor measurements |
dc.creator.none.fl_str_mv |
Roda, Fernando Musulin, Estanislao |
author |
Roda, Fernando |
author_facet |
Roda, Fernando Musulin, Estanislao |
author_role |
author |
author2 |
Musulin, Estanislao |
author2_role |
author |
dc.subject.none.fl_str_mv |
Intelligent Data Analysis Temporal Abstraction Temporal Reasoning Ontology Semantic Sensor Web Description Logic |
topic |
Intelligent Data Analysis Temporal Abstraction Temporal Reasoning Ontology Semantic Sensor Web Description Logic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditions Fil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditions |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29715 Roda, Fernando; Musulin, Estanislao; An ontology-based framework to support intelligent data analysis of sensor measurements; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 17; 12-2014; 7914-7926 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29715 |
identifier_str_mv |
Roda, Fernando; Musulin, Estanislao; An ontology-based framework to support intelligent data analysis of sensor measurements; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 17; 12-2014; 7914-7926 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.06.033 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414003741 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd. |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980519343554560 |
score |
12.993085 |