Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
- Autores
- Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.
Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; Chile
Fil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
GALAXIES: GENERAL
GALAXIES: KINEMATICS AND DYNAMICS
METHODS: STATISTICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224575
Ver los metadatos del registro completo
| id |
CONICETDig_1aa210de29056f727a22af1612416c2f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224575 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxiesRosito, M. S.Bignone, Lucas AxelTissera, P. B.Pedrosa, Susana ElizabethGALAXIES: GENERALGALAXIES: KINEMATICS AND DYNAMICSMETHODS: STATISTICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; ChileFil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaEDP Sciences2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224575Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth; Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies; EDP Sciences; Astronomy and Astrophysics; 671; 3-2023; 1-200004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202244707info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:00:29Zoai:ri.conicet.gov.ar:11336/224575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:00:30.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| title |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| spellingShingle |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies Rosito, M. S. GALAXIES: GENERAL GALAXIES: KINEMATICS AND DYNAMICS METHODS: STATISTICAL |
| title_short |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| title_full |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| title_fullStr |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| title_full_unstemmed |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| title_sort |
Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies |
| dc.creator.none.fl_str_mv |
Rosito, M. S. Bignone, Lucas Axel Tissera, P. B. Pedrosa, Susana Elizabeth |
| author |
Rosito, M. S. |
| author_facet |
Rosito, M. S. Bignone, Lucas Axel Tissera, P. B. Pedrosa, Susana Elizabeth |
| author_role |
author |
| author2 |
Bignone, Lucas Axel Tissera, P. B. Pedrosa, Susana Elizabeth |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
GALAXIES: GENERAL GALAXIES: KINEMATICS AND DYNAMICS METHODS: STATISTICAL |
| topic |
GALAXIES: GENERAL GALAXIES: KINEMATICS AND DYNAMICS METHODS: STATISTICAL |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations. Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; Chile Fil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
| description |
Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224575 Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth; Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies; EDP Sciences; Astronomy and Astrophysics; 671; 3-2023; 1-20 0004-6361 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/224575 |
| identifier_str_mv |
Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth; Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies; EDP Sciences; Astronomy and Astrophysics; 671; 3-2023; 1-20 0004-6361 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202244707 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
EDP Sciences |
| publisher.none.fl_str_mv |
EDP Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781166460338176 |
| score |
12.982451 |