Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies

Autores
Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.
Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; Chile
Fil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
GALAXIES: GENERAL
GALAXIES: KINEMATICS AND DYNAMICS
METHODS: STATISTICAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224575

id CONICETDig_1aa210de29056f727a22af1612416c2f
oai_identifier_str oai:ri.conicet.gov.ar:11336/224575
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxiesRosito, M. S.Bignone, Lucas AxelTissera, P. B.Pedrosa, Susana ElizabethGALAXIES: GENERALGALAXIES: KINEMATICS AND DYNAMICSMETHODS: STATISTICALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; ChileFil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaEDP Sciences2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224575Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth; Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies; EDP Sciences; Astronomy and Astrophysics; 671; 3-2023; 1-200004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202244707info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:00:29Zoai:ri.conicet.gov.ar:11336/224575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:00:30.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
title Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
spellingShingle Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
Rosito, M. S.
GALAXIES: GENERAL
GALAXIES: KINEMATICS AND DYNAMICS
METHODS: STATISTICAL
title_short Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
title_full Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
title_fullStr Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
title_full_unstemmed Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
title_sort Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies
dc.creator.none.fl_str_mv Rosito, M. S.
Bignone, Lucas Axel
Tissera, P. B.
Pedrosa, Susana Elizabeth
author Rosito, M. S.
author_facet Rosito, M. S.
Bignone, Lucas Axel
Tissera, P. B.
Pedrosa, Susana Elizabeth
author_role author
author2 Bignone, Lucas Axel
Tissera, P. B.
Pedrosa, Susana Elizabeth
author2_role author
author
author
dc.subject.none.fl_str_mv GALAXIES: GENERAL
GALAXIES: KINEMATICS AND DYNAMICS
METHODS: STATISTICAL
topic GALAXIES: GENERAL
GALAXIES: KINEMATICS AND DYNAMICS
METHODS: STATISTICAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.
Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; Chile
Fil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224575
Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth; Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies; EDP Sciences; Astronomy and Astrophysics; 671; 3-2023; 1-20
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224575
identifier_str_mv Rosito, M. S.; Bignone, Lucas Axel; Tissera, P. B.; Pedrosa, Susana Elizabeth; Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies; EDP Sciences; Astronomy and Astrophysics; 671; 3-2023; 1-20
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202244707
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781166460338176
score 12.982451