Identificación de candidatas a estrellas Be utilizando redes neuronales
- Autores
- Aidelman, Yael Judith; Escudero, Carlos Gabriel; Ronchetti, Franco; Quiroga, F.; Granada, Anahi; Lanzarini, L.
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Las bases de datos astronómicas proporcionan actualmente grandes volúmenes de información espectroscópica y fotométrica. En particular, los datos fotométricos resultan relativamente más fáciles de obtener debido al menor tiempo de uso del telescopio, con lo cual existe una creciente necesidad de utilizarlos para identificar automáticamente objetos específicos y luego estudiarlos en detalle. En este trabajo, nos centramos en la identificación fotométrica de estrellas Be, objetos tempranos que presentan la línea Hα en emisión. Este tipo de objeto es de interés para el entendimiento de la evolución de estrellas en alta rotación, y también para el estudio de la física de discos circunestelares. Para su identificación, utilizamos datos fotom´etricos (VPHAS+, 2MASS y AllWISE) y espectroscópicos (LAMOST), junto con técnicas de aprendizaje automático, como las redesneuronales. Nuestros resultados muestran que utilizar los índices Q libres de enrojecimiento como descriptores, proporcionan una mejora significativa en la identificación fotométrica de estrellas Be.
Astronomical databases currently provide large volumes of spectroscopic and photometric information. In particular, as photometric data is relatively easier to obtain due to the shorter use time of the telescope, there is an increasing need to use those data in order to automatically identify specific objects and study them in detail afterwards. In this work, we focus on the photometric identification of Be stars, early-type stars with Hα line in emission. These kind of objects are very interest for understanding the evolution of fast rotating stars, and also for the study of the physics of circumstellar disks. For their identification, we use photometric (VPHAS+, 2MASS, AlWISE) and spectroscopic (LAMOST) databases, together with machine learning techniques, such as neural networks. Our results show that using the reddening-free Q indices as features provides a significant improvement in the photometric identification of Be stars.
Fil: Aidelman, Yael Judith. Universidad Nacional de la Plata. Facultad de Cs.astronómicas y Geofísicas. Departamento de Espectrocopia Estelar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Escudero, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Ronchetti, Franco. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
Fil: Quiroga, F.. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
Fil: Granada, Anahi. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lanzarini, L.. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
62° Reunión Anual de la Asociación Argentina de Astronomía
Rosario
Argentina
Asociación Argentina de Astronomía - Materia
-
methods: data analysis
stars: emission-line, Be
surveys - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210727
Ver los metadatos del registro completo
id |
CONICETDig_1a851df512aba099d69992654c782dcf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210727 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Identificación de candidatas a estrellas Be utilizando redes neuronalesAidelman, Yael JudithEscudero, Carlos GabrielRonchetti, FrancoQuiroga, F.Granada, AnahiLanzarini, L.methods: data analysisstars: emission-line, Besurveyshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Las bases de datos astronómicas proporcionan actualmente grandes volúmenes de información espectroscópica y fotométrica. En particular, los datos fotométricos resultan relativamente más fáciles de obtener debido al menor tiempo de uso del telescopio, con lo cual existe una creciente necesidad de utilizarlos para identificar automáticamente objetos específicos y luego estudiarlos en detalle. En este trabajo, nos centramos en la identificación fotométrica de estrellas Be, objetos tempranos que presentan la línea Hα en emisión. Este tipo de objeto es de interés para el entendimiento de la evolución de estrellas en alta rotación, y también para el estudio de la física de discos circunestelares. Para su identificación, utilizamos datos fotom´etricos (VPHAS+, 2MASS y AllWISE) y espectroscópicos (LAMOST), junto con técnicas de aprendizaje automático, como las redesneuronales. Nuestros resultados muestran que utilizar los índices Q libres de enrojecimiento como descriptores, proporcionan una mejora significativa en la identificación fotométrica de estrellas Be.Astronomical databases currently provide large volumes of spectroscopic and photometric information. In particular, as photometric data is relatively easier to obtain due to the shorter use time of the telescope, there is an increasing need to use those data in order to automatically identify specific objects and study them in detail afterwards. In this work, we focus on the photometric identification of Be stars, early-type stars with Hα line in emission. These kind of objects are very interest for understanding the evolution of fast rotating stars, and also for the study of the physics of circumstellar disks. For their identification, we use photometric (VPHAS+, 2MASS, AlWISE) and spectroscopic (LAMOST) databases, together with machine learning techniques, such as neural networks. Our results show that using the reddening-free Q indices as features provides a significant improvement in the photometric identification of Be stars.Fil: Aidelman, Yael Judith. Universidad Nacional de la Plata. Facultad de Cs.astronómicas y Geofísicas. Departamento de Espectrocopia Estelar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Escudero, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Ronchetti, Franco. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; ArgentinaFil: Quiroga, F.. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; ArgentinaFil: Granada, Anahi. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lanzarini, L.. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina62° Reunión Anual de la Asociación Argentina de AstronomíaRosarioArgentinaAsociación Argentina de AstronomíaAsociación Argentina de Astronomía2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210727Identificación de candidatas a estrellas Be utilizando redes neuronales; 62° Reunión Anual de la Asociación Argentina de Astronomía; Rosario; Argentina; 2020; 1-30571-3285CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.astronomiaargentina.org.ar/b62/2021BAAA...62...62A.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:12Zoai:ri.conicet.gov.ar:11336/210727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:12.463CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
title |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
spellingShingle |
Identificación de candidatas a estrellas Be utilizando redes neuronales Aidelman, Yael Judith methods: data analysis stars: emission-line, Be surveys |
title_short |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
title_full |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
title_fullStr |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
title_full_unstemmed |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
title_sort |
Identificación de candidatas a estrellas Be utilizando redes neuronales |
dc.creator.none.fl_str_mv |
Aidelman, Yael Judith Escudero, Carlos Gabriel Ronchetti, Franco Quiroga, F. Granada, Anahi Lanzarini, L. |
author |
Aidelman, Yael Judith |
author_facet |
Aidelman, Yael Judith Escudero, Carlos Gabriel Ronchetti, Franco Quiroga, F. Granada, Anahi Lanzarini, L. |
author_role |
author |
author2 |
Escudero, Carlos Gabriel Ronchetti, Franco Quiroga, F. Granada, Anahi Lanzarini, L. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
methods: data analysis stars: emission-line, Be surveys |
topic |
methods: data analysis stars: emission-line, Be surveys |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Las bases de datos astronómicas proporcionan actualmente grandes volúmenes de información espectroscópica y fotométrica. En particular, los datos fotométricos resultan relativamente más fáciles de obtener debido al menor tiempo de uso del telescopio, con lo cual existe una creciente necesidad de utilizarlos para identificar automáticamente objetos específicos y luego estudiarlos en detalle. En este trabajo, nos centramos en la identificación fotométrica de estrellas Be, objetos tempranos que presentan la línea Hα en emisión. Este tipo de objeto es de interés para el entendimiento de la evolución de estrellas en alta rotación, y también para el estudio de la física de discos circunestelares. Para su identificación, utilizamos datos fotom´etricos (VPHAS+, 2MASS y AllWISE) y espectroscópicos (LAMOST), junto con técnicas de aprendizaje automático, como las redesneuronales. Nuestros resultados muestran que utilizar los índices Q libres de enrojecimiento como descriptores, proporcionan una mejora significativa en la identificación fotométrica de estrellas Be. Astronomical databases currently provide large volumes of spectroscopic and photometric information. In particular, as photometric data is relatively easier to obtain due to the shorter use time of the telescope, there is an increasing need to use those data in order to automatically identify specific objects and study them in detail afterwards. In this work, we focus on the photometric identification of Be stars, early-type stars with Hα line in emission. These kind of objects are very interest for understanding the evolution of fast rotating stars, and also for the study of the physics of circumstellar disks. For their identification, we use photometric (VPHAS+, 2MASS, AlWISE) and spectroscopic (LAMOST) databases, together with machine learning techniques, such as neural networks. Our results show that using the reddening-free Q indices as features provides a significant improvement in the photometric identification of Be stars. Fil: Aidelman, Yael Judith. Universidad Nacional de la Plata. Facultad de Cs.astronómicas y Geofísicas. Departamento de Espectrocopia Estelar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Escudero, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Ronchetti, Franco. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina Fil: Quiroga, F.. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina Fil: Granada, Anahi. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lanzarini, L.. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina 62° Reunión Anual de la Asociación Argentina de Astronomía Rosario Argentina Asociación Argentina de Astronomía |
description |
Las bases de datos astronómicas proporcionan actualmente grandes volúmenes de información espectroscópica y fotométrica. En particular, los datos fotométricos resultan relativamente más fáciles de obtener debido al menor tiempo de uso del telescopio, con lo cual existe una creciente necesidad de utilizarlos para identificar automáticamente objetos específicos y luego estudiarlos en detalle. En este trabajo, nos centramos en la identificación fotométrica de estrellas Be, objetos tempranos que presentan la línea Hα en emisión. Este tipo de objeto es de interés para el entendimiento de la evolución de estrellas en alta rotación, y también para el estudio de la física de discos circunestelares. Para su identificación, utilizamos datos fotom´etricos (VPHAS+, 2MASS y AllWISE) y espectroscópicos (LAMOST), junto con técnicas de aprendizaje automático, como las redesneuronales. Nuestros resultados muestran que utilizar los índices Q libres de enrojecimiento como descriptores, proporcionan una mejora significativa en la identificación fotométrica de estrellas Be. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210727 Identificación de candidatas a estrellas Be utilizando redes neuronales; 62° Reunión Anual de la Asociación Argentina de Astronomía; Rosario; Argentina; 2020; 1-3 0571-3285 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210727 |
identifier_str_mv |
Identificación de candidatas a estrellas Be utilizando redes neuronales; 62° Reunión Anual de la Asociación Argentina de Astronomía; Rosario; Argentina; 2020; 1-3 0571-3285 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.astronomiaargentina.org.ar/b62/2021BAAA...62...62A.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Astronomía |
publisher.none.fl_str_mv |
Asociación Argentina de Astronomía |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613735827636224 |
score |
13.069144 |