Minimal Log Gravity

Autores
Giribet, Gaston Enrique; Vásquez, Yerko
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Minimal Massive Gravity (MMG) is an extension of three-dimensional Topologically Massive Gravity that, when formulated about Anti-de Sitter space, accomplishes to solve the tension between bulk and boundary unitarity that other models in three dimensions su§er from. We study this theory at the chiral point, i.e. at the point of the parameter space where one of the central charges of the dual conformal Öeld theory vanishes. We investigate the non-linear regime of the theory, meaning that we study exact solutions to the MMG Öeld equations that are not Einstein manifolds. We exhibit a large class of solutions of this type, which behave asymptotically in di§erent manners. In particular, we Önd analytic solutions that represent two-parameter deformations of extremal BaÒados-Teitelboim-Zanelli (BTZ) black holes. These geometries behave asymptotically as solutions of the so-called Log Gravity, and, despite the weakened falling-o§ close to the boundary, they have Önite mass and Önite angular momentum, which we compute. We also Önd time-dependent deformations of BTZ that obey Brown-Henneaux asymptotic boundary conditions. The existence of such solutions shows that Birkho§ theorem does not hold in MMG at the chiral point. Other peculiar features of the theory at the chiral point, such as the degeneracy it exhibits in the decoupling limit, are discussed.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Pontificia Universidad Catolica de Valparaiso; Chile
Fil: Vásquez, Yerko. Universidad de la Serena; Chile
Materia
Quantum Gravity
Black Holes
3d Gravity
Ads/Cft
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18060

id CONICETDig_19d8b36f7667ecda7659f90397943db5
oai_identifier_str oai:ri.conicet.gov.ar:11336/18060
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Minimal Log GravityGiribet, Gaston EnriqueVásquez, YerkoQuantum GravityBlack Holes3d GravityAds/Cfthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Minimal Massive Gravity (MMG) is an extension of three-dimensional Topologically Massive Gravity that, when formulated about Anti-de Sitter space, accomplishes to solve the tension between bulk and boundary unitarity that other models in three dimensions su§er from. We study this theory at the chiral point, i.e. at the point of the parameter space where one of the central charges of the dual conformal Öeld theory vanishes. We investigate the non-linear regime of the theory, meaning that we study exact solutions to the MMG Öeld equations that are not Einstein manifolds. We exhibit a large class of solutions of this type, which behave asymptotically in di§erent manners. In particular, we Önd analytic solutions that represent two-parameter deformations of extremal BaÒados-Teitelboim-Zanelli (BTZ) black holes. These geometries behave asymptotically as solutions of the so-called Log Gravity, and, despite the weakened falling-o§ close to the boundary, they have Önite mass and Önite angular momentum, which we compute. We also Önd time-dependent deformations of BTZ that obey Brown-Henneaux asymptotic boundary conditions. The existence of such solutions shows that Birkho§ theorem does not hold in MMG at the chiral point. Other peculiar features of the theory at the chiral point, such as the degeneracy it exhibits in the decoupling limit, are discussed.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Pontificia Universidad Catolica de Valparaiso; ChileFil: Vásquez, Yerko. Universidad de la Serena; ChileAmerican Physical Society2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18060Giribet, Gaston Enrique; Vásquez, Yerko; Minimal Log Gravity; American Physical Society; Physical Review D; 91; 2; 1-2015; 1-13; 0240260556-2821enginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.024026info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.024026info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.6957info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:44Zoai:ri.conicet.gov.ar:11336/18060instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:44.417CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Minimal Log Gravity
title Minimal Log Gravity
spellingShingle Minimal Log Gravity
Giribet, Gaston Enrique
Quantum Gravity
Black Holes
3d Gravity
Ads/Cft
title_short Minimal Log Gravity
title_full Minimal Log Gravity
title_fullStr Minimal Log Gravity
title_full_unstemmed Minimal Log Gravity
title_sort Minimal Log Gravity
dc.creator.none.fl_str_mv Giribet, Gaston Enrique
Vásquez, Yerko
author Giribet, Gaston Enrique
author_facet Giribet, Gaston Enrique
Vásquez, Yerko
author_role author
author2 Vásquez, Yerko
author2_role author
dc.subject.none.fl_str_mv Quantum Gravity
Black Holes
3d Gravity
Ads/Cft
topic Quantum Gravity
Black Holes
3d Gravity
Ads/Cft
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Minimal Massive Gravity (MMG) is an extension of three-dimensional Topologically Massive Gravity that, when formulated about Anti-de Sitter space, accomplishes to solve the tension between bulk and boundary unitarity that other models in three dimensions su§er from. We study this theory at the chiral point, i.e. at the point of the parameter space where one of the central charges of the dual conformal Öeld theory vanishes. We investigate the non-linear regime of the theory, meaning that we study exact solutions to the MMG Öeld equations that are not Einstein manifolds. We exhibit a large class of solutions of this type, which behave asymptotically in di§erent manners. In particular, we Önd analytic solutions that represent two-parameter deformations of extremal BaÒados-Teitelboim-Zanelli (BTZ) black holes. These geometries behave asymptotically as solutions of the so-called Log Gravity, and, despite the weakened falling-o§ close to the boundary, they have Önite mass and Önite angular momentum, which we compute. We also Önd time-dependent deformations of BTZ that obey Brown-Henneaux asymptotic boundary conditions. The existence of such solutions shows that Birkho§ theorem does not hold in MMG at the chiral point. Other peculiar features of the theory at the chiral point, such as the degeneracy it exhibits in the decoupling limit, are discussed.
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Pontificia Universidad Catolica de Valparaiso; Chile
Fil: Vásquez, Yerko. Universidad de la Serena; Chile
description Minimal Massive Gravity (MMG) is an extension of three-dimensional Topologically Massive Gravity that, when formulated about Anti-de Sitter space, accomplishes to solve the tension between bulk and boundary unitarity that other models in three dimensions su§er from. We study this theory at the chiral point, i.e. at the point of the parameter space where one of the central charges of the dual conformal Öeld theory vanishes. We investigate the non-linear regime of the theory, meaning that we study exact solutions to the MMG Öeld equations that are not Einstein manifolds. We exhibit a large class of solutions of this type, which behave asymptotically in di§erent manners. In particular, we Önd analytic solutions that represent two-parameter deformations of extremal BaÒados-Teitelboim-Zanelli (BTZ) black holes. These geometries behave asymptotically as solutions of the so-called Log Gravity, and, despite the weakened falling-o§ close to the boundary, they have Önite mass and Önite angular momentum, which we compute. We also Önd time-dependent deformations of BTZ that obey Brown-Henneaux asymptotic boundary conditions. The existence of such solutions shows that Birkho§ theorem does not hold in MMG at the chiral point. Other peculiar features of the theory at the chiral point, such as the degeneracy it exhibits in the decoupling limit, are discussed.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18060
Giribet, Gaston Enrique; Vásquez, Yerko; Minimal Log Gravity; American Physical Society; Physical Review D; 91; 2; 1-2015; 1-13; 024026
0556-2821
url http://hdl.handle.net/11336/18060
identifier_str_mv Giribet, Gaston Enrique; Vásquez, Yerko; Minimal Log Gravity; American Physical Society; Physical Review D; 91; 2; 1-2015; 1-13; 024026
0556-2821
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.024026
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.024026
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.6957
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981374147952640
score 12.48226