Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings

Autores
Goudar, Shivaprasad S.; Stolka, Kristen B.; Koso Thomas, Marion; Honnungar, Narayan V.; Mastiholi, Shivanand C.; Ramadurg, Umesh Y.; Dhaded, Sangappa M.; Pasha, Omrana; Patel, Archana; Esamai, Fabian; Chomba, Elwyn; Garces, Ana; Althabe, Fernando; Carlo, Waldemar A.; Goldenberg, Robert L.; Hibberd, Patricia L.; Liechty, Edward A.; Krebs, Nancy F.; Hambidge, Michael K.; Moore, Janet L.; Wallace, Dennis D.; Derman, Richard J; Bhalachandra, Kodkany S.; Bose, Carl L.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
BACKGROUND: To describe quantitative data quality monitoring and performance metrics adopted by the Global Network´s (GN) Maternal Newborn Health Registry (MNHR), a maternal and perinatal population-based registry (MPPBR) based in low and middle income countries (LMICs). METHODS: Ongoing prospective, population-based data on all pregnancy outcomes within defined geographical locations participating in the GN have been collected since 2008. Data quality metrics were defined and are implemented at the cluster, site and the central level to ensure data quality. Quantitative performance metrics are described for data collected between 2010 and 2013. RESULTS: Delivery outcome rates over 95% illustrate that all sites are successful in following patients from pregnancy through delivery. Examples of specific performance metric reports illustrate how both the metrics and reporting process are used to identify cluster-level and site-level quality issues and illustrate how those metrics track over time. Other summary reports (e.g. the increasing proportion of measured birth weight compared to estimated and missing birth weight) illustrate how a site has improved quality over time. CONCLUSION: High quality MPPBRs such as the MNHR provide key information on pregnancy outcomes to local and international health officials where civil registration systems are lacking. The MNHR has measures in place to monitor data collection procedures and improve the quality of data collected. Sites have increasingly achieved acceptable values of performance metrics over time, indicating improvements in data quality, but the quality control program must continue to evolve to optimize the use of the MNHR to assess the impact of community interventions in research protocols in pregnancy and perinatal health.
Fil: Goudar, Shivaprasad S.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Stolka, Kristen B.. Research Triangle Institute International; Estados Unidos
Fil: Koso Thomas, Marion. Eunice Kennedy Shriver National Institute of Child Health and Human Development; Estados Unidos
Fil: Honnungar, Narayan V.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Mastiholi, Shivanand C.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Ramadurg, Umesh Y.. S. Nijalingappa Medical College; India
Fil: Dhaded, Sangappa M.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Pasha, Omrana. Aga Khan University; Pakistán
Fil: Patel, Archana. Indira Gandhi Government Medical College and Lata Medical Research Foundation; India
Fil: Esamai, Fabian. University School of Medicine; Kenia
Fil: Chomba, Elwyn. University of Zambia; Zambia
Fil: Garces, Ana. Universidad de San Carlos; Guatemala
Fil: Althabe, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Carlo, Waldemar A.. University of Alabama at Birmingahm; Estados Unidos
Fil: Goldenberg, Robert L.. Columbia University; Estados Unidos
Fil: Hibberd, Patricia L.. Massachusetts General Hospital for Children; Estados Unidos
Fil: Liechty, Edward A.. Indiana University; Estados Unidos
Fil: Krebs, Nancy F.. University of Colorado School of Medicine; Estados Unidos
Fil: Hambidge, Michael K.. University of Colorado School of Medicine; Estados Unidos
Fil: Moore, Janet L.. Research Triangle Institute International; Estados Unidos
Fil: Wallace, Dennis D.. Research Triangle Institute International; Estados Unidos
Fil: Derman, Richard J. Christiana Care Health Services; Estados Unidos
Fil: Bhalachandra, Kodkany S.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Bose, Carl L.. University of North Carolina; Estados Unidos
Materia
Newborn health
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44502

id CONICETDig_19b733c148cd5dee92c702a80d67ae02
oai_identifier_str oai:ri.conicet.gov.ar:11336/44502
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settingsGoudar, Shivaprasad S.Stolka, Kristen B.Koso Thomas, MarionHonnungar, Narayan V.Mastiholi, Shivanand C.Ramadurg, Umesh Y.Dhaded, Sangappa M.Pasha, OmranaPatel, ArchanaEsamai, FabianChomba, ElwynGarces, AnaAlthabe, FernandoCarlo, Waldemar A.Goldenberg, Robert L.Hibberd, Patricia L.Liechty, Edward A.Krebs, Nancy F.Hambidge, Michael K.Moore, Janet L.Wallace, Dennis D.Derman, Richard JBhalachandra, Kodkany S.Bose, Carl L.Newborn healthhttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3BACKGROUND: To describe quantitative data quality monitoring and performance metrics adopted by the Global Network´s (GN) Maternal Newborn Health Registry (MNHR), a maternal and perinatal population-based registry (MPPBR) based in low and middle income countries (LMICs). METHODS: Ongoing prospective, population-based data on all pregnancy outcomes within defined geographical locations participating in the GN have been collected since 2008. Data quality metrics were defined and are implemented at the cluster, site and the central level to ensure data quality. Quantitative performance metrics are described for data collected between 2010 and 2013. RESULTS: Delivery outcome rates over 95% illustrate that all sites are successful in following patients from pregnancy through delivery. Examples of specific performance metric reports illustrate how both the metrics and reporting process are used to identify cluster-level and site-level quality issues and illustrate how those metrics track over time. Other summary reports (e.g. the increasing proportion of measured birth weight compared to estimated and missing birth weight) illustrate how a site has improved quality over time. CONCLUSION: High quality MPPBRs such as the MNHR provide key information on pregnancy outcomes to local and international health officials where civil registration systems are lacking. The MNHR has measures in place to monitor data collection procedures and improve the quality of data collected. Sites have increasingly achieved acceptable values of performance metrics over time, indicating improvements in data quality, but the quality control program must continue to evolve to optimize the use of the MNHR to assess the impact of community interventions in research protocols in pregnancy and perinatal health.Fil: Goudar, Shivaprasad S.. KLE University. Jawaharlal Nehru Medical College; IndiaFil: Stolka, Kristen B.. Research Triangle Institute International; Estados UnidosFil: Koso Thomas, Marion. Eunice Kennedy Shriver National Institute of Child Health and Human Development; Estados UnidosFil: Honnungar, Narayan V.. KLE University. Jawaharlal Nehru Medical College; IndiaFil: Mastiholi, Shivanand C.. KLE University. Jawaharlal Nehru Medical College; IndiaFil: Ramadurg, Umesh Y.. S. Nijalingappa Medical College; IndiaFil: Dhaded, Sangappa M.. KLE University. Jawaharlal Nehru Medical College; IndiaFil: Pasha, Omrana. Aga Khan University; PakistánFil: Patel, Archana. Indira Gandhi Government Medical College and Lata Medical Research Foundation; IndiaFil: Esamai, Fabian. University School of Medicine; KeniaFil: Chomba, Elwyn. University of Zambia; ZambiaFil: Garces, Ana. Universidad de San Carlos; GuatemalaFil: Althabe, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Carlo, Waldemar A.. University of Alabama at Birmingahm; Estados UnidosFil: Goldenberg, Robert L.. Columbia University; Estados UnidosFil: Hibberd, Patricia L.. Massachusetts General Hospital for Children; Estados UnidosFil: Liechty, Edward A.. Indiana University; Estados UnidosFil: Krebs, Nancy F.. University of Colorado School of Medicine; Estados UnidosFil: Hambidge, Michael K.. University of Colorado School of Medicine; Estados UnidosFil: Moore, Janet L.. Research Triangle Institute International; Estados UnidosFil: Wallace, Dennis D.. Research Triangle Institute International; Estados UnidosFil: Derman, Richard J. Christiana Care Health Services; Estados UnidosFil: Bhalachandra, Kodkany S.. KLE University. Jawaharlal Nehru Medical College; IndiaFil: Bose, Carl L.. University of North Carolina; Estados UnidosBioMed Central2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44502Goudar, Shivaprasad S.; Stolka, Kristen B.; Koso Thomas, Marion; Honnungar, Narayan V.; Mastiholi, Shivanand C.; et al.; Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings; BioMed Central; Reproductive Health; 12; Supl. 2; 6-2015; 1-101742-4755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://reproductive-health-journal.biomedcentral.com/articles/10.1186/1742-4755-12-S2-S2info:eu-repo/semantics/altIdentifier/doi/10.1186/1742-4755-12-S2-S2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:23Zoai:ri.conicet.gov.ar:11336/44502instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:24.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
title Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
spellingShingle Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
Goudar, Shivaprasad S.
Newborn health
title_short Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
title_full Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
title_fullStr Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
title_full_unstemmed Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
title_sort Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings
dc.creator.none.fl_str_mv Goudar, Shivaprasad S.
Stolka, Kristen B.
Koso Thomas, Marion
Honnungar, Narayan V.
Mastiholi, Shivanand C.
Ramadurg, Umesh Y.
Dhaded, Sangappa M.
Pasha, Omrana
Patel, Archana
Esamai, Fabian
Chomba, Elwyn
Garces, Ana
Althabe, Fernando
Carlo, Waldemar A.
Goldenberg, Robert L.
Hibberd, Patricia L.
Liechty, Edward A.
Krebs, Nancy F.
Hambidge, Michael K.
Moore, Janet L.
Wallace, Dennis D.
Derman, Richard J
Bhalachandra, Kodkany S.
Bose, Carl L.
author Goudar, Shivaprasad S.
author_facet Goudar, Shivaprasad S.
Stolka, Kristen B.
Koso Thomas, Marion
Honnungar, Narayan V.
Mastiholi, Shivanand C.
Ramadurg, Umesh Y.
Dhaded, Sangappa M.
Pasha, Omrana
Patel, Archana
Esamai, Fabian
Chomba, Elwyn
Garces, Ana
Althabe, Fernando
Carlo, Waldemar A.
Goldenberg, Robert L.
Hibberd, Patricia L.
Liechty, Edward A.
Krebs, Nancy F.
Hambidge, Michael K.
Moore, Janet L.
Wallace, Dennis D.
Derman, Richard J
Bhalachandra, Kodkany S.
Bose, Carl L.
author_role author
author2 Stolka, Kristen B.
Koso Thomas, Marion
Honnungar, Narayan V.
Mastiholi, Shivanand C.
Ramadurg, Umesh Y.
Dhaded, Sangappa M.
Pasha, Omrana
Patel, Archana
Esamai, Fabian
Chomba, Elwyn
Garces, Ana
Althabe, Fernando
Carlo, Waldemar A.
Goldenberg, Robert L.
Hibberd, Patricia L.
Liechty, Edward A.
Krebs, Nancy F.
Hambidge, Michael K.
Moore, Janet L.
Wallace, Dennis D.
Derman, Richard J
Bhalachandra, Kodkany S.
Bose, Carl L.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Newborn health
topic Newborn health
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv BACKGROUND: To describe quantitative data quality monitoring and performance metrics adopted by the Global Network´s (GN) Maternal Newborn Health Registry (MNHR), a maternal and perinatal population-based registry (MPPBR) based in low and middle income countries (LMICs). METHODS: Ongoing prospective, population-based data on all pregnancy outcomes within defined geographical locations participating in the GN have been collected since 2008. Data quality metrics were defined and are implemented at the cluster, site and the central level to ensure data quality. Quantitative performance metrics are described for data collected between 2010 and 2013. RESULTS: Delivery outcome rates over 95% illustrate that all sites are successful in following patients from pregnancy through delivery. Examples of specific performance metric reports illustrate how both the metrics and reporting process are used to identify cluster-level and site-level quality issues and illustrate how those metrics track over time. Other summary reports (e.g. the increasing proportion of measured birth weight compared to estimated and missing birth weight) illustrate how a site has improved quality over time. CONCLUSION: High quality MPPBRs such as the MNHR provide key information on pregnancy outcomes to local and international health officials where civil registration systems are lacking. The MNHR has measures in place to monitor data collection procedures and improve the quality of data collected. Sites have increasingly achieved acceptable values of performance metrics over time, indicating improvements in data quality, but the quality control program must continue to evolve to optimize the use of the MNHR to assess the impact of community interventions in research protocols in pregnancy and perinatal health.
Fil: Goudar, Shivaprasad S.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Stolka, Kristen B.. Research Triangle Institute International; Estados Unidos
Fil: Koso Thomas, Marion. Eunice Kennedy Shriver National Institute of Child Health and Human Development; Estados Unidos
Fil: Honnungar, Narayan V.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Mastiholi, Shivanand C.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Ramadurg, Umesh Y.. S. Nijalingappa Medical College; India
Fil: Dhaded, Sangappa M.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Pasha, Omrana. Aga Khan University; Pakistán
Fil: Patel, Archana. Indira Gandhi Government Medical College and Lata Medical Research Foundation; India
Fil: Esamai, Fabian. University School of Medicine; Kenia
Fil: Chomba, Elwyn. University of Zambia; Zambia
Fil: Garces, Ana. Universidad de San Carlos; Guatemala
Fil: Althabe, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Carlo, Waldemar A.. University of Alabama at Birmingahm; Estados Unidos
Fil: Goldenberg, Robert L.. Columbia University; Estados Unidos
Fil: Hibberd, Patricia L.. Massachusetts General Hospital for Children; Estados Unidos
Fil: Liechty, Edward A.. Indiana University; Estados Unidos
Fil: Krebs, Nancy F.. University of Colorado School of Medicine; Estados Unidos
Fil: Hambidge, Michael K.. University of Colorado School of Medicine; Estados Unidos
Fil: Moore, Janet L.. Research Triangle Institute International; Estados Unidos
Fil: Wallace, Dennis D.. Research Triangle Institute International; Estados Unidos
Fil: Derman, Richard J. Christiana Care Health Services; Estados Unidos
Fil: Bhalachandra, Kodkany S.. KLE University. Jawaharlal Nehru Medical College; India
Fil: Bose, Carl L.. University of North Carolina; Estados Unidos
description BACKGROUND: To describe quantitative data quality monitoring and performance metrics adopted by the Global Network´s (GN) Maternal Newborn Health Registry (MNHR), a maternal and perinatal population-based registry (MPPBR) based in low and middle income countries (LMICs). METHODS: Ongoing prospective, population-based data on all pregnancy outcomes within defined geographical locations participating in the GN have been collected since 2008. Data quality metrics were defined and are implemented at the cluster, site and the central level to ensure data quality. Quantitative performance metrics are described for data collected between 2010 and 2013. RESULTS: Delivery outcome rates over 95% illustrate that all sites are successful in following patients from pregnancy through delivery. Examples of specific performance metric reports illustrate how both the metrics and reporting process are used to identify cluster-level and site-level quality issues and illustrate how those metrics track over time. Other summary reports (e.g. the increasing proportion of measured birth weight compared to estimated and missing birth weight) illustrate how a site has improved quality over time. CONCLUSION: High quality MPPBRs such as the MNHR provide key information on pregnancy outcomes to local and international health officials where civil registration systems are lacking. The MNHR has measures in place to monitor data collection procedures and improve the quality of data collected. Sites have increasingly achieved acceptable values of performance metrics over time, indicating improvements in data quality, but the quality control program must continue to evolve to optimize the use of the MNHR to assess the impact of community interventions in research protocols in pregnancy and perinatal health.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44502
Goudar, Shivaprasad S.; Stolka, Kristen B.; Koso Thomas, Marion; Honnungar, Narayan V.; Mastiholi, Shivanand C.; et al.; Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings; BioMed Central; Reproductive Health; 12; Supl. 2; 6-2015; 1-10
1742-4755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44502
identifier_str_mv Goudar, Shivaprasad S.; Stolka, Kristen B.; Koso Thomas, Marion; Honnungar, Narayan V.; Mastiholi, Shivanand C.; et al.; Data quality monitoring and performance metrics of a prospective, population-based observational study of maternal and newborn health in low resource settings; BioMed Central; Reproductive Health; 12; Supl. 2; 6-2015; 1-10
1742-4755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://reproductive-health-journal.biomedcentral.com/articles/10.1186/1742-4755-12-S2-S2
info:eu-repo/semantics/altIdentifier/doi/10.1186/1742-4755-12-S2-S2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613102635581440
score 13.070432