Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres

Autores
Rohrmann, Rene Daniel; Santos, Andrés
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms ĉij(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of ĉij(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico San Juan. Instituto de Ciencias Astronomicas de la Tierra y del Espacio; Argentina
Fil: Santos, Andrés. Universidad de Extremadura; España
Materia
Percus-Yevick
Fluids
Statistics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12987

id CONICETDig_195fc1fa45373d38bdadd29bae23fa0c
oai_identifier_str oai:ri.conicet.gov.ar:11336/12987
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheresRohrmann, Rene DanielSantos, AndrésPercus-YevickFluidsStatisticshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms ĉij(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of ĉij(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico San Juan. Instituto de Ciencias Astronomicas de la Tierra y del Espacio; ArgentinaFil: Santos, Andrés. Universidad de Extremadura; EspañaAmerican Physical Society2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12987Rohrmann, Rene Daniel; Santos, Andrés; Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 84; 4; 10-2011; 1-52470-00452470-0053enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.041203info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.84.041203info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:44Zoai:ri.conicet.gov.ar:11336/12987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:44.715CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
title Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
spellingShingle Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
Rohrmann, Rene Daniel
Percus-Yevick
Fluids
Statistics
title_short Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
title_full Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
title_fullStr Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
title_full_unstemmed Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
title_sort Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
dc.creator.none.fl_str_mv Rohrmann, Rene Daniel
Santos, Andrés
author Rohrmann, Rene Daniel
author_facet Rohrmann, Rene Daniel
Santos, Andrés
author_role author
author2 Santos, Andrés
author2_role author
dc.subject.none.fl_str_mv Percus-Yevick
Fluids
Statistics
topic Percus-Yevick
Fluids
Statistics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms ĉij(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of ĉij(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico San Juan. Instituto de Ciencias Astronomicas de la Tierra y del Espacio; Argentina
Fil: Santos, Andrés. Universidad de Extremadura; España
description Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E 83, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms ĉij(k) of the direct correlation functions defined by the OZ relation. From the analysis of the poles of ĉij(k) we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12987
Rohrmann, Rene Daniel; Santos, Andrés; Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 84; 4; 10-2011; 1-5
2470-0045
2470-0053
url http://hdl.handle.net/11336/12987
identifier_str_mv Rohrmann, Rene Daniel; Santos, Andrés; Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 84; 4; 10-2011; 1-5
2470-0045
2470-0053
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.041203
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.84.041203
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981312727613440
score 12.48226