Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina
- Autores
- Argañaraz, Juan Pablo; Gavier Pizarro, Gregorio; Zak, Marcelo Román; Landi, Marcos Alejandro; Bellis, Laura Marisa
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fires are a recurrent disturbance in Semiarid Chaco mountains of central Argentina. The interaction of multiple factors generates variable patterns offire occurrence in space and time. Understanding the dominantfire drivers at different spatial scales is a fundamental goal to minimize the negative impacts offires. Our aim was to identify the biophysical and human drivers offires in the Semiarid Chaco mountains of Central Argentina and their individual effects onfire activity, in order to determine the thresholds and/or ranges of the drivers at whichfire occurrence is favored or disfavored. We usedfire frequency as the response variable and a set of 28 potential predictor variables, which included climatic, human, topographic, biological and hydrological factors. Data were analyzed using Boosted Regression Trees, using data from near 10,500 sampling points. Our model identified thefire drivers accurately (75.6% of deviance explained). Although humans are responsible for most ignitions, climatic variables, such as annual precipitation, annual potential evapotranspiration and temperature seasonality were the most important determiners offire frequency, followed by human (population density and distance to waste disposals) and biological (NDVI) predictors. In general,fire activity was higher at intermediate levels of precipitation and primary productivity and in the proximity of urban solid waste disposals. Fires were also more prone to occur in areas with greater variability in temperature and productivity. Boosted Regression Trees proved to be a useful and accurate tool to determinefire controls and the ranges at which drivers favor fire activity. Our approach provides a valuable insight into the ecology offires in our study area and in other landscapes with similar characteristics, and the results will be helpful to develop management policies and predict changes infire activity in response to different climate changes and development scenarios.
Fil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina
Fil: Gavier Pizarro, Gregorio. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Zak, Marcelo Román. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica; Argentina
Fil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina
Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina - Materia
-
Fire Drivers
Fire Ecology
Fire Frequency
Boosted Regression Trees
Semiarid Chaco
Chaco Serrano
Sierras de Córdoba - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7923
Ver los metadatos del registro completo
id |
CONICETDig_193dcc6982f05d082a07e443aaca1bd2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7923 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central ArgentinaArgañaraz, Juan PabloGavier Pizarro, GregorioZak, Marcelo RománLandi, Marcos AlejandroBellis, Laura MarisaFire DriversFire EcologyFire FrequencyBoosted Regression TreesSemiarid ChacoChaco SerranoSierras de Córdobahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Fires are a recurrent disturbance in Semiarid Chaco mountains of central Argentina. The interaction of multiple factors generates variable patterns offire occurrence in space and time. Understanding the dominantfire drivers at different spatial scales is a fundamental goal to minimize the negative impacts offires. Our aim was to identify the biophysical and human drivers offires in the Semiarid Chaco mountains of Central Argentina and their individual effects onfire activity, in order to determine the thresholds and/or ranges of the drivers at whichfire occurrence is favored or disfavored. We usedfire frequency as the response variable and a set of 28 potential predictor variables, which included climatic, human, topographic, biological and hydrological factors. Data were analyzed using Boosted Regression Trees, using data from near 10,500 sampling points. Our model identified thefire drivers accurately (75.6% of deviance explained). Although humans are responsible for most ignitions, climatic variables, such as annual precipitation, annual potential evapotranspiration and temperature seasonality were the most important determiners offire frequency, followed by human (population density and distance to waste disposals) and biological (NDVI) predictors. In general,fire activity was higher at intermediate levels of precipitation and primary productivity and in the proximity of urban solid waste disposals. Fires were also more prone to occur in areas with greater variability in temperature and productivity. Boosted Regression Trees proved to be a useful and accurate tool to determinefire controls and the ranges at which drivers favor fire activity. Our approach provides a valuable insight into the ecology offires in our study area and in other landscapes with similar characteristics, and the results will be helpful to develop management policies and predict changes infire activity in response to different climate changes and development scenarios.Fil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; ArgentinaFil: Gavier Pizarro, Gregorio. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Zak, Marcelo Román. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica; ArgentinaFil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; ArgentinaFil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; ArgentinaElsevier Science2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7923Argañaraz, Juan Pablo; Gavier Pizarro, Gregorio; Zak, Marcelo Román; Landi, Marcos Alejandro; Bellis, Laura Marisa; Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina; Elsevier Science; Science Of The Total Environment; 520; 7-2015; 1-120048-9697enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0048969715002338info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2015.02.081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:00Zoai:ri.conicet.gov.ar:11336/7923instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:01.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
title |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
spellingShingle |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina Argañaraz, Juan Pablo Fire Drivers Fire Ecology Fire Frequency Boosted Regression Trees Semiarid Chaco Chaco Serrano Sierras de Córdoba |
title_short |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
title_full |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
title_fullStr |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
title_full_unstemmed |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
title_sort |
Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina |
dc.creator.none.fl_str_mv |
Argañaraz, Juan Pablo Gavier Pizarro, Gregorio Zak, Marcelo Román Landi, Marcos Alejandro Bellis, Laura Marisa |
author |
Argañaraz, Juan Pablo |
author_facet |
Argañaraz, Juan Pablo Gavier Pizarro, Gregorio Zak, Marcelo Román Landi, Marcos Alejandro Bellis, Laura Marisa |
author_role |
author |
author2 |
Gavier Pizarro, Gregorio Zak, Marcelo Román Landi, Marcos Alejandro Bellis, Laura Marisa |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Fire Drivers Fire Ecology Fire Frequency Boosted Regression Trees Semiarid Chaco Chaco Serrano Sierras de Córdoba |
topic |
Fire Drivers Fire Ecology Fire Frequency Boosted Regression Trees Semiarid Chaco Chaco Serrano Sierras de Córdoba |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fires are a recurrent disturbance in Semiarid Chaco mountains of central Argentina. The interaction of multiple factors generates variable patterns offire occurrence in space and time. Understanding the dominantfire drivers at different spatial scales is a fundamental goal to minimize the negative impacts offires. Our aim was to identify the biophysical and human drivers offires in the Semiarid Chaco mountains of Central Argentina and their individual effects onfire activity, in order to determine the thresholds and/or ranges of the drivers at whichfire occurrence is favored or disfavored. We usedfire frequency as the response variable and a set of 28 potential predictor variables, which included climatic, human, topographic, biological and hydrological factors. Data were analyzed using Boosted Regression Trees, using data from near 10,500 sampling points. Our model identified thefire drivers accurately (75.6% of deviance explained). Although humans are responsible for most ignitions, climatic variables, such as annual precipitation, annual potential evapotranspiration and temperature seasonality were the most important determiners offire frequency, followed by human (population density and distance to waste disposals) and biological (NDVI) predictors. In general,fire activity was higher at intermediate levels of precipitation and primary productivity and in the proximity of urban solid waste disposals. Fires were also more prone to occur in areas with greater variability in temperature and productivity. Boosted Regression Trees proved to be a useful and accurate tool to determinefire controls and the ranges at which drivers favor fire activity. Our approach provides a valuable insight into the ecology offires in our study area and in other landscapes with similar characteristics, and the results will be helpful to develop management policies and predict changes infire activity in response to different climate changes and development scenarios. Fil: Argañaraz, Juan Pablo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina Fil: Gavier Pizarro, Gregorio. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina Fil: Zak, Marcelo Román. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica; Argentina Fil: Landi, Marcos Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; Argentina |
description |
Fires are a recurrent disturbance in Semiarid Chaco mountains of central Argentina. The interaction of multiple factors generates variable patterns offire occurrence in space and time. Understanding the dominantfire drivers at different spatial scales is a fundamental goal to minimize the negative impacts offires. Our aim was to identify the biophysical and human drivers offires in the Semiarid Chaco mountains of Central Argentina and their individual effects onfire activity, in order to determine the thresholds and/or ranges of the drivers at whichfire occurrence is favored or disfavored. We usedfire frequency as the response variable and a set of 28 potential predictor variables, which included climatic, human, topographic, biological and hydrological factors. Data were analyzed using Boosted Regression Trees, using data from near 10,500 sampling points. Our model identified thefire drivers accurately (75.6% of deviance explained). Although humans are responsible for most ignitions, climatic variables, such as annual precipitation, annual potential evapotranspiration and temperature seasonality were the most important determiners offire frequency, followed by human (population density and distance to waste disposals) and biological (NDVI) predictors. In general,fire activity was higher at intermediate levels of precipitation and primary productivity and in the proximity of urban solid waste disposals. Fires were also more prone to occur in areas with greater variability in temperature and productivity. Boosted Regression Trees proved to be a useful and accurate tool to determinefire controls and the ranges at which drivers favor fire activity. Our approach provides a valuable insight into the ecology offires in our study area and in other landscapes with similar characteristics, and the results will be helpful to develop management policies and predict changes infire activity in response to different climate changes and development scenarios. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7923 Argañaraz, Juan Pablo; Gavier Pizarro, Gregorio; Zak, Marcelo Román; Landi, Marcos Alejandro; Bellis, Laura Marisa; Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina; Elsevier Science; Science Of The Total Environment; 520; 7-2015; 1-12 0048-9697 |
url |
http://hdl.handle.net/11336/7923 |
identifier_str_mv |
Argañaraz, Juan Pablo; Gavier Pizarro, Gregorio; Zak, Marcelo Román; Landi, Marcos Alejandro; Bellis, Laura Marisa; Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina; Elsevier Science; Science Of The Total Environment; 520; 7-2015; 1-12 0048-9697 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0048969715002338 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2015.02.081 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082701093765120 |
score |
13.22299 |