Ground state of composite bosons in low-dimensional graphs

Autores
Cormick, Maria Cecilia; Ermann, Leonardo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a system of composite bosons given by strongly bound fermion pairs tunneling through sites that form a low-dimensional network. It has been shown that the ground state of this system can have condensatelike properties in the very dilute regime for two-dimensional lattices but displays fermionization for one-dimensional lattices. Studying graphs with fractal dimensions, we explore intermediate situations between these two cases and observe a correlation between increasing dimension and increasing condensatelike character. However, this is only the case for graphs for which the average path length grows with power smaller than 1 in the number of sites and which have an unbounded circuit rank. We thus conjecture that these two conditions are relevant for condensation of composite bosons in arbitrary networks and should be considered jointly with the well-established criterion of high entanglement between constituents.
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ermann, Leonardo. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Materia
cobosons
fractal
quantum mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/220211

id CONICETDig_1918a79a6ea993fc5cc49209c37e143f
oai_identifier_str oai:ri.conicet.gov.ar:11336/220211
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ground state of composite bosons in low-dimensional graphsCormick, Maria CeciliaErmann, Leonardocobosonsfractalquantum mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider a system of composite bosons given by strongly bound fermion pairs tunneling through sites that form a low-dimensional network. It has been shown that the ground state of this system can have condensatelike properties in the very dilute regime for two-dimensional lattices but displays fermionization for one-dimensional lattices. Studying graphs with fractal dimensions, we explore intermediate situations between these two cases and observe a correlation between increasing dimension and increasing condensatelike character. However, this is only the case for graphs for which the average path length grows with power smaller than 1 in the number of sites and which have an unbounded circuit rank. We thus conjecture that these two conditions are relevant for condensation of composite bosons in arbitrary networks and should be considered jointly with the well-established criterion of high entanglement between constituents.Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Ermann, Leonardo. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaAmerican Physical Society2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220211Cormick, Maria Cecilia; Ermann, Leonardo; Ground state of composite bosons in low-dimensional graphs; American Physical Society; Physical Review A; 107; 4; 4-2023; 1-82469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.043324info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.107.043324info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:29Zoai:ri.conicet.gov.ar:11336/220211instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:29.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ground state of composite bosons in low-dimensional graphs
title Ground state of composite bosons in low-dimensional graphs
spellingShingle Ground state of composite bosons in low-dimensional graphs
Cormick, Maria Cecilia
cobosons
fractal
quantum mechanics
title_short Ground state of composite bosons in low-dimensional graphs
title_full Ground state of composite bosons in low-dimensional graphs
title_fullStr Ground state of composite bosons in low-dimensional graphs
title_full_unstemmed Ground state of composite bosons in low-dimensional graphs
title_sort Ground state of composite bosons in low-dimensional graphs
dc.creator.none.fl_str_mv Cormick, Maria Cecilia
Ermann, Leonardo
author Cormick, Maria Cecilia
author_facet Cormick, Maria Cecilia
Ermann, Leonardo
author_role author
author2 Ermann, Leonardo
author2_role author
dc.subject.none.fl_str_mv cobosons
fractal
quantum mechanics
topic cobosons
fractal
quantum mechanics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a system of composite bosons given by strongly bound fermion pairs tunneling through sites that form a low-dimensional network. It has been shown that the ground state of this system can have condensatelike properties in the very dilute regime for two-dimensional lattices but displays fermionization for one-dimensional lattices. Studying graphs with fractal dimensions, we explore intermediate situations between these two cases and observe a correlation between increasing dimension and increasing condensatelike character. However, this is only the case for graphs for which the average path length grows with power smaller than 1 in the number of sites and which have an unbounded circuit rank. We thus conjecture that these two conditions are relevant for condensation of composite bosons in arbitrary networks and should be considered jointly with the well-established criterion of high entanglement between constituents.
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Ermann, Leonardo. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
description We consider a system of composite bosons given by strongly bound fermion pairs tunneling through sites that form a low-dimensional network. It has been shown that the ground state of this system can have condensatelike properties in the very dilute regime for two-dimensional lattices but displays fermionization for one-dimensional lattices. Studying graphs with fractal dimensions, we explore intermediate situations between these two cases and observe a correlation between increasing dimension and increasing condensatelike character. However, this is only the case for graphs for which the average path length grows with power smaller than 1 in the number of sites and which have an unbounded circuit rank. We thus conjecture that these two conditions are relevant for condensation of composite bosons in arbitrary networks and should be considered jointly with the well-established criterion of high entanglement between constituents.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/220211
Cormick, Maria Cecilia; Ermann, Leonardo; Ground state of composite bosons in low-dimensional graphs; American Physical Society; Physical Review A; 107; 4; 4-2023; 1-8
2469-9926
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/220211
identifier_str_mv Cormick, Maria Cecilia; Ermann, Leonardo; Ground state of composite bosons in low-dimensional graphs; American Physical Society; Physical Review A; 107; 4; 4-2023; 1-8
2469-9926
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.043324
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.107.043324
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082581000355840
score 13.22299