An empirical formulation to describe the evolution of the high burnup structure

Autores
Lemes, Martín; Soba, Alejandro; Denis, Alicia Catalina
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behaviour and progress of porosity at local burnup values ranging from 60 to 2 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in the open literature and with simulations performed by other authors. The results of these separate tests are quite satisfactory so, the next step will be the incorporation of this model as a new subroutine of the DIONISIO code, to expand the application range of this general fuel behaviour simulation tool.
Fil: Lemes, Martín. Comisión Nacional de Energía Atómica; Argentina
Fil: Soba, Alejandro. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Denis, Alicia Catalina. Comisión Nacional de Energía Atómica; Argentina
Materia
nuclear fuel
high burnup
porosity
structure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31593

id CONICETDig_1912aa65f5994a19dd34e220bc447c39
oai_identifier_str oai:ri.conicet.gov.ar:11336/31593
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An empirical formulation to describe the evolution of the high burnup structureLemes, MartínSoba, AlejandroDenis, Alicia Catalinanuclear fuelhigh burnupporositystructurehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behaviour and progress of porosity at local burnup values ranging from 60 to 2 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in the open literature and with simulations performed by other authors. The results of these separate tests are quite satisfactory so, the next step will be the incorporation of this model as a new subroutine of the DIONISIO code, to expand the application range of this general fuel behaviour simulation tool.Fil: Lemes, Martín. Comisión Nacional de Energía Atómica; ArgentinaFil: Soba, Alejandro. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Denis, Alicia Catalina. Comisión Nacional de Energía Atómica; ArgentinaElsevier Science2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31593Soba, Alejandro; Lemes, Martín; Denis, Alicia Catalina; An empirical formulation to describe the evolution of the high burnup structure; Elsevier Science; Journal of Nuclear Materials; 456; 9-2014; 174-1810022-3115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022311514006382info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnucmat.2014.09.048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:07:08Zoai:ri.conicet.gov.ar:11336/31593instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:07:08.661CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An empirical formulation to describe the evolution of the high burnup structure
title An empirical formulation to describe the evolution of the high burnup structure
spellingShingle An empirical formulation to describe the evolution of the high burnup structure
Lemes, Martín
nuclear fuel
high burnup
porosity
structure
title_short An empirical formulation to describe the evolution of the high burnup structure
title_full An empirical formulation to describe the evolution of the high burnup structure
title_fullStr An empirical formulation to describe the evolution of the high burnup structure
title_full_unstemmed An empirical formulation to describe the evolution of the high burnup structure
title_sort An empirical formulation to describe the evolution of the high burnup structure
dc.creator.none.fl_str_mv Lemes, Martín
Soba, Alejandro
Denis, Alicia Catalina
author Lemes, Martín
author_facet Lemes, Martín
Soba, Alejandro
Denis, Alicia Catalina
author_role author
author2 Soba, Alejandro
Denis, Alicia Catalina
author2_role author
author
dc.subject.none.fl_str_mv nuclear fuel
high burnup
porosity
structure
topic nuclear fuel
high burnup
porosity
structure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behaviour and progress of porosity at local burnup values ranging from 60 to 2 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in the open literature and with simulations performed by other authors. The results of these separate tests are quite satisfactory so, the next step will be the incorporation of this model as a new subroutine of the DIONISIO code, to expand the application range of this general fuel behaviour simulation tool.
Fil: Lemes, Martín. Comisión Nacional de Energía Atómica; Argentina
Fil: Soba, Alejandro. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Denis, Alicia Catalina. Comisión Nacional de Energía Atómica; Argentina
description In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behaviour and progress of porosity at local burnup values ranging from 60 to 2 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in the open literature and with simulations performed by other authors. The results of these separate tests are quite satisfactory so, the next step will be the incorporation of this model as a new subroutine of the DIONISIO code, to expand the application range of this general fuel behaviour simulation tool.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31593
Soba, Alejandro; Lemes, Martín; Denis, Alicia Catalina; An empirical formulation to describe the evolution of the high burnup structure; Elsevier Science; Journal of Nuclear Materials; 456; 9-2014; 174-181
0022-3115
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31593
identifier_str_mv Soba, Alejandro; Lemes, Martín; Denis, Alicia Catalina; An empirical formulation to describe the evolution of the high burnup structure; Elsevier Science; Journal of Nuclear Materials; 456; 9-2014; 174-181
0022-3115
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022311514006382
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnucmat.2014.09.048
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781381831557120
score 12.982451