On the number of Galois orbits of newforms

Autores
Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.
Fil: Dieulefait, Luis Victor. Universidad de Barcelona; España
Fil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tsaknias, Panagiotis. No especifíca;
Materia
GALOIS ORBITS
MAEDA'S CONJECTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/172757

id CONICETDig_18997816697217d2d112d03179baba68
oai_identifier_str oai:ri.conicet.gov.ar:11336/172757
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the number of Galois orbits of newformsDieulefait, Luis VictorPacetti, Ariel MartínTsaknias, PanagiotisGALOIS ORBITSMAEDA'S CONJECTUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.Fil: Dieulefait, Luis Victor. Universidad de Barcelona; EspañaFil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Tsaknias, Panagiotis. No especifíca;European Mathematical Society2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172757Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-28601435-98551435-9863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JEMS/1073info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/1073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:04Zoai:ri.conicet.gov.ar:11336/172757instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:04.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the number of Galois orbits of newforms
title On the number of Galois orbits of newforms
spellingShingle On the number of Galois orbits of newforms
Dieulefait, Luis Victor
GALOIS ORBITS
MAEDA'S CONJECTURE
title_short On the number of Galois orbits of newforms
title_full On the number of Galois orbits of newforms
title_fullStr On the number of Galois orbits of newforms
title_full_unstemmed On the number of Galois orbits of newforms
title_sort On the number of Galois orbits of newforms
dc.creator.none.fl_str_mv Dieulefait, Luis Victor
Pacetti, Ariel Martín
Tsaknias, Panagiotis
author Dieulefait, Luis Victor
author_facet Dieulefait, Luis Victor
Pacetti, Ariel Martín
Tsaknias, Panagiotis
author_role author
author2 Pacetti, Ariel Martín
Tsaknias, Panagiotis
author2_role author
author
dc.subject.none.fl_str_mv GALOIS ORBITS
MAEDA'S CONJECTURE
topic GALOIS ORBITS
MAEDA'S CONJECTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.
Fil: Dieulefait, Luis Victor. Universidad de Barcelona; España
Fil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tsaknias, Panagiotis. No especifíca;
description Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/172757
Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860
1435-9855
1435-9863
CONICET Digital
CONICET
url http://hdl.handle.net/11336/172757
identifier_str_mv Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860
1435-9855
1435-9863
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JEMS/1073
info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/1073
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269438224629760
score 13.13397