On the number of Galois orbits of newforms
- Autores
- Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.
Fil: Dieulefait, Luis Victor. Universidad de Barcelona; España
Fil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tsaknias, Panagiotis. No especifíca; - Materia
-
GALOIS ORBITS
MAEDA'S CONJECTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172757
Ver los metadatos del registro completo
id |
CONICETDig_18997816697217d2d112d03179baba68 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172757 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the number of Galois orbits of newformsDieulefait, Luis VictorPacetti, Ariel MartínTsaknias, PanagiotisGALOIS ORBITSMAEDA'S CONJECTUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.Fil: Dieulefait, Luis Victor. Universidad de Barcelona; EspañaFil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Tsaknias, Panagiotis. No especifíca;European Mathematical Society2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172757Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-28601435-98551435-9863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JEMS/1073info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/1073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:04Zoai:ri.conicet.gov.ar:11336/172757instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:04.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the number of Galois orbits of newforms |
title |
On the number of Galois orbits of newforms |
spellingShingle |
On the number of Galois orbits of newforms Dieulefait, Luis Victor GALOIS ORBITS MAEDA'S CONJECTURE |
title_short |
On the number of Galois orbits of newforms |
title_full |
On the number of Galois orbits of newforms |
title_fullStr |
On the number of Galois orbits of newforms |
title_full_unstemmed |
On the number of Galois orbits of newforms |
title_sort |
On the number of Galois orbits of newforms |
dc.creator.none.fl_str_mv |
Dieulefait, Luis Victor Pacetti, Ariel Martín Tsaknias, Panagiotis |
author |
Dieulefait, Luis Victor |
author_facet |
Dieulefait, Luis Victor Pacetti, Ariel Martín Tsaknias, Panagiotis |
author_role |
author |
author2 |
Pacetti, Ariel Martín Tsaknias, Panagiotis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GALOIS ORBITS MAEDA'S CONJECTURE |
topic |
GALOIS ORBITS MAEDA'S CONJECTURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has. Fil: Dieulefait, Luis Victor. Universidad de Barcelona; España Fil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Tsaknias, Panagiotis. No especifíca; |
description |
Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172757 Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860 1435-9855 1435-9863 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172757 |
identifier_str_mv |
Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860 1435-9855 1435-9863 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JEMS/1073 info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/1073 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269438224629760 |
score |
13.13397 |