Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity

Autores
Mietta, Jose L.; Jorge, Guillermo Antonio; Perez, Oscar Edgardo; Maeder, Thomas; Negri, Ricardo Martin
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An anisotropic magnetorheological composite formed by dispersions of silver-covered magnetite microparticles(Fe3O4@Ag) in polydimethylsiloxane (PDMS) displaying electrical conduction only in one preferred direction is presented. A set-up for applying and detecting electrical conduction through the composite is described and applied to characterize the behavior of the system in on-off commutation cycles. The composite is obtained by loading the polymer with relatively low concentration of fillers (5%,w/w of the total weight) and curing it in the presence of a uniform magnetic field. The fillers appear in the final composite as an array of needles, i.e. pseudo-chains of particles aligned in the direction of the magnetic field. Using Fe3O4 nanoparticles (13 nm) it is possible to obtain cured composites in a superparamagnetic state, that is, without magnetic hysteresis at room temperature. Hysteresis is not found in the elastic properties either; in particular, Mullins effects (change of physical properties after the first strain-stress cycle) were not observed. No measurable transversal electrical conduction was detected (transversal resistivity larger than 62 M cm). Thus, significant electrical conductivity is present only between contact points that are exactly facing each other at both sides of the composites in the direction parallel to the needles. The I-V curves in that direction have ohmic behavior and exhibit both piezoresistance and magnetoresistance, that is, the electrical conductivity in the direction parallel to the pseudo-chains increases when a pressure (i.e. compressive stress) is applied at constant magnetic field and/or when a magnetic field is applied at constant pressure. The materials do not exhibit magnetoelectric or piezoresistive hysteresis. These characteristics illustrate the high potentiality of these systems in elastic connectors where electrical conduction can be varied by external mechanical or magnetic forces.
Fil: Mietta, Jose L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Jorge, Guillermo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Perez, Oscar Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires; Argentina
Fil: Maeder, Thomas. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Negri, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Materia
Sensors
Magnetoelastomers
Magnetoresistivity
Piezoresistivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7888

id CONICETDig_17f770d07bee4d5509464e5290f83456
oai_identifier_str oai:ri.conicet.gov.ar:11336/7888
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivityMietta, Jose L.Jorge, Guillermo AntonioPerez, Oscar EdgardoMaeder, ThomasNegri, Ricardo MartinSensorsMagnetoelastomersMagnetoresistivityPiezoresistivityhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1An anisotropic magnetorheological composite formed by dispersions of silver-covered magnetite microparticles(Fe3O4@Ag) in polydimethylsiloxane (PDMS) displaying electrical conduction only in one preferred direction is presented. A set-up for applying and detecting electrical conduction through the composite is described and applied to characterize the behavior of the system in on-off commutation cycles. The composite is obtained by loading the polymer with relatively low concentration of fillers (5%,w/w of the total weight) and curing it in the presence of a uniform magnetic field. The fillers appear in the final composite as an array of needles, i.e. pseudo-chains of particles aligned in the direction of the magnetic field. Using Fe3O4 nanoparticles (13 nm) it is possible to obtain cured composites in a superparamagnetic state, that is, without magnetic hysteresis at room temperature. Hysteresis is not found in the elastic properties either; in particular, Mullins effects (change of physical properties after the first strain-stress cycle) were not observed. No measurable transversal electrical conduction was detected (transversal resistivity larger than 62 M cm). Thus, significant electrical conductivity is present only between contact points that are exactly facing each other at both sides of the composites in the direction parallel to the needles. The I-V curves in that direction have ohmic behavior and exhibit both piezoresistance and magnetoresistance, that is, the electrical conductivity in the direction parallel to the pseudo-chains increases when a pressure (i.e. compressive stress) is applied at constant magnetic field and/or when a magnetic field is applied at constant pressure. The materials do not exhibit magnetoelectric or piezoresistive hysteresis. These characteristics illustrate the high potentiality of these systems in elastic connectors where electrical conduction can be varied by external mechanical or magnetic forces.Fil: Mietta, Jose L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Jorge, Guillermo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Perez, Oscar Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires; ArgentinaFil: Maeder, Thomas. Ecole Polytechnique Federale de Lausanne; SuizaFil: Negri, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaElsevier2012-12-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7888Mietta, Jose L.; Jorge, Guillermo Antonio; Perez, Oscar Edgardo; Maeder, Thomas; Negri, Ricardo Martin; Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity; Elsevier; Sensors And Actuators A: Physical; 192; 22-12-2012; 34-410924-4247enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.sna.2012.12.018info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0924424712007558info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:25Zoai:ri.conicet.gov.ar:11336/7888instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:25.817CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
title Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
spellingShingle Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
Mietta, Jose L.
Sensors
Magnetoelastomers
Magnetoresistivity
Piezoresistivity
title_short Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
title_full Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
title_fullStr Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
title_full_unstemmed Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
title_sort Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity
dc.creator.none.fl_str_mv Mietta, Jose L.
Jorge, Guillermo Antonio
Perez, Oscar Edgardo
Maeder, Thomas
Negri, Ricardo Martin
author Mietta, Jose L.
author_facet Mietta, Jose L.
Jorge, Guillermo Antonio
Perez, Oscar Edgardo
Maeder, Thomas
Negri, Ricardo Martin
author_role author
author2 Jorge, Guillermo Antonio
Perez, Oscar Edgardo
Maeder, Thomas
Negri, Ricardo Martin
author2_role author
author
author
author
dc.subject.none.fl_str_mv Sensors
Magnetoelastomers
Magnetoresistivity
Piezoresistivity
topic Sensors
Magnetoelastomers
Magnetoresistivity
Piezoresistivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An anisotropic magnetorheological composite formed by dispersions of silver-covered magnetite microparticles(Fe3O4@Ag) in polydimethylsiloxane (PDMS) displaying electrical conduction only in one preferred direction is presented. A set-up for applying and detecting electrical conduction through the composite is described and applied to characterize the behavior of the system in on-off commutation cycles. The composite is obtained by loading the polymer with relatively low concentration of fillers (5%,w/w of the total weight) and curing it in the presence of a uniform magnetic field. The fillers appear in the final composite as an array of needles, i.e. pseudo-chains of particles aligned in the direction of the magnetic field. Using Fe3O4 nanoparticles (13 nm) it is possible to obtain cured composites in a superparamagnetic state, that is, without magnetic hysteresis at room temperature. Hysteresis is not found in the elastic properties either; in particular, Mullins effects (change of physical properties after the first strain-stress cycle) were not observed. No measurable transversal electrical conduction was detected (transversal resistivity larger than 62 M cm). Thus, significant electrical conductivity is present only between contact points that are exactly facing each other at both sides of the composites in the direction parallel to the needles. The I-V curves in that direction have ohmic behavior and exhibit both piezoresistance and magnetoresistance, that is, the electrical conductivity in the direction parallel to the pseudo-chains increases when a pressure (i.e. compressive stress) is applied at constant magnetic field and/or when a magnetic field is applied at constant pressure. The materials do not exhibit magnetoelectric or piezoresistive hysteresis. These characteristics illustrate the high potentiality of these systems in elastic connectors where electrical conduction can be varied by external mechanical or magnetic forces.
Fil: Mietta, Jose L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Jorge, Guillermo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
Fil: Perez, Oscar Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires; Argentina
Fil: Maeder, Thomas. Ecole Polytechnique Federale de Lausanne; Suiza
Fil: Negri, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina
description An anisotropic magnetorheological composite formed by dispersions of silver-covered magnetite microparticles(Fe3O4@Ag) in polydimethylsiloxane (PDMS) displaying electrical conduction only in one preferred direction is presented. A set-up for applying and detecting electrical conduction through the composite is described and applied to characterize the behavior of the system in on-off commutation cycles. The composite is obtained by loading the polymer with relatively low concentration of fillers (5%,w/w of the total weight) and curing it in the presence of a uniform magnetic field. The fillers appear in the final composite as an array of needles, i.e. pseudo-chains of particles aligned in the direction of the magnetic field. Using Fe3O4 nanoparticles (13 nm) it is possible to obtain cured composites in a superparamagnetic state, that is, without magnetic hysteresis at room temperature. Hysteresis is not found in the elastic properties either; in particular, Mullins effects (change of physical properties after the first strain-stress cycle) were not observed. No measurable transversal electrical conduction was detected (transversal resistivity larger than 62 M cm). Thus, significant electrical conductivity is present only between contact points that are exactly facing each other at both sides of the composites in the direction parallel to the needles. The I-V curves in that direction have ohmic behavior and exhibit both piezoresistance and magnetoresistance, that is, the electrical conductivity in the direction parallel to the pseudo-chains increases when a pressure (i.e. compressive stress) is applied at constant magnetic field and/or when a magnetic field is applied at constant pressure. The materials do not exhibit magnetoelectric or piezoresistive hysteresis. These characteristics illustrate the high potentiality of these systems in elastic connectors where electrical conduction can be varied by external mechanical or magnetic forces.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7888
Mietta, Jose L.; Jorge, Guillermo Antonio; Perez, Oscar Edgardo; Maeder, Thomas; Negri, Ricardo Martin; Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity; Elsevier; Sensors And Actuators A: Physical; 192; 22-12-2012; 34-41
0924-4247
url http://hdl.handle.net/11336/7888
identifier_str_mv Mietta, Jose L.; Jorge, Guillermo Antonio; Perez, Oscar Edgardo; Maeder, Thomas; Negri, Ricardo Martin; Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity; Elsevier; Sensors And Actuators A: Physical; 192; 22-12-2012; 34-41
0924-4247
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sna.2012.12.018
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0924424712007558
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269157132861440
score 13.13397