3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles
- Autores
- Ruiz Mateos Serrano, Ruben; Aguzin, Ana; Mitoudi Vagourdi, Eleni; Tao, Xudong; Naegele, Tobias E.; Jin, Amy T.; Lopez Larrea, Naroa; Picchio, Matías Luis; Alban Paccha, Marco Vinicio; Minari, Roque Javier; Mecerreyes, David; Dominguez Alfaro, Antonio; Malliaras, George G.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns —flat, pyramidal, striped and wavy— to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine nterfaces.
Fil: Ruiz Mateos Serrano, Ruben. University of Cambridge; Reino Unido
Fil: Aguzin, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Mitoudi Vagourdi, Eleni. University of Cambridge; Estados Unidos
Fil: Tao, Xudong. University of Cambridge; Reino Unido
Fil: Naegele, Tobias E.. University of Cambridge; Reino Unido
Fil: Jin, Amy T.. University of Cambridge; Reino Unido
Fil: Lopez Larrea, Naroa. Universidad del País Vasco; España
Fil: Picchio, Matías Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Alban Paccha, Marco Vinicio. University of Cambridge; Estados Unidos
Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Mecerreyes, David. Universidad del País Vasco; España
Fil: Dominguez Alfaro, Antonio. University of Cambridge; Reino Unido
Fil: Malliaras, George G.. University of Cambridge; Estados Unidos - Materia
-
EUTECTOGELS
NOVEL ELECTRODES
3D PRINTINGS
EMG MEASUREMENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/245913
Ver los metadatos del registro completo
id |
CONICETDig_1787c563c0e2d6f4cd7fd5db507454f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/245913 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textilesRuiz Mateos Serrano, RubenAguzin, AnaMitoudi Vagourdi, EleniTao, XudongNaegele, Tobias E.Jin, Amy T.Lopez Larrea, NaroaPicchio, Matías LuisAlban Paccha, Marco VinicioMinari, Roque JavierMecerreyes, DavidDominguez Alfaro, AntonioMalliaras, George G.EUTECTOGELSNOVEL ELECTRODES3D PRINTINGSEMG MEASUREMENTShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns —flat, pyramidal, striped and wavy— to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine nterfaces.Fil: Ruiz Mateos Serrano, Ruben. University of Cambridge; Reino UnidoFil: Aguzin, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Mitoudi Vagourdi, Eleni. University of Cambridge; Estados UnidosFil: Tao, Xudong. University of Cambridge; Reino UnidoFil: Naegele, Tobias E.. University of Cambridge; Reino UnidoFil: Jin, Amy T.. University of Cambridge; Reino UnidoFil: Lopez Larrea, Naroa. Universidad del País Vasco; EspañaFil: Picchio, Matías Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Alban Paccha, Marco Vinicio. University of Cambridge; Estados UnidosFil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Mecerreyes, David. Universidad del País Vasco; EspañaFil: Dominguez Alfaro, Antonio. University of Cambridge; Reino UnidoFil: Malliaras, George G.. University of Cambridge; Estados UnidosElsevier2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245913Ruiz Mateos Serrano, Ruben; Aguzin, Ana; Mitoudi Vagourdi, Eleni; Tao, Xudong; Naegele, Tobias E.; et al.; 3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles; Elsevier; Biomaterials; 310; 122624; 10-2024; 1-110142-9612CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0142961224001583info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biomaterials.2024.122624info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:13Zoai:ri.conicet.gov.ar:11336/245913instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:13.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
title |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
spellingShingle |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles Ruiz Mateos Serrano, Ruben EUTECTOGELS NOVEL ELECTRODES 3D PRINTINGS EMG MEASUREMENTS |
title_short |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
title_full |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
title_fullStr |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
title_full_unstemmed |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
title_sort |
3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles |
dc.creator.none.fl_str_mv |
Ruiz Mateos Serrano, Ruben Aguzin, Ana Mitoudi Vagourdi, Eleni Tao, Xudong Naegele, Tobias E. Jin, Amy T. Lopez Larrea, Naroa Picchio, Matías Luis Alban Paccha, Marco Vinicio Minari, Roque Javier Mecerreyes, David Dominguez Alfaro, Antonio Malliaras, George G. |
author |
Ruiz Mateos Serrano, Ruben |
author_facet |
Ruiz Mateos Serrano, Ruben Aguzin, Ana Mitoudi Vagourdi, Eleni Tao, Xudong Naegele, Tobias E. Jin, Amy T. Lopez Larrea, Naroa Picchio, Matías Luis Alban Paccha, Marco Vinicio Minari, Roque Javier Mecerreyes, David Dominguez Alfaro, Antonio Malliaras, George G. |
author_role |
author |
author2 |
Aguzin, Ana Mitoudi Vagourdi, Eleni Tao, Xudong Naegele, Tobias E. Jin, Amy T. Lopez Larrea, Naroa Picchio, Matías Luis Alban Paccha, Marco Vinicio Minari, Roque Javier Mecerreyes, David Dominguez Alfaro, Antonio Malliaras, George G. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
EUTECTOGELS NOVEL ELECTRODES 3D PRINTINGS EMG MEASUREMENTS |
topic |
EUTECTOGELS NOVEL ELECTRODES 3D PRINTINGS EMG MEASUREMENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns —flat, pyramidal, striped and wavy— to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine nterfaces. Fil: Ruiz Mateos Serrano, Ruben. University of Cambridge; Reino Unido Fil: Aguzin, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Mitoudi Vagourdi, Eleni. University of Cambridge; Estados Unidos Fil: Tao, Xudong. University of Cambridge; Reino Unido Fil: Naegele, Tobias E.. University of Cambridge; Reino Unido Fil: Jin, Amy T.. University of Cambridge; Reino Unido Fil: Lopez Larrea, Naroa. Universidad del País Vasco; España Fil: Picchio, Matías Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Alban Paccha, Marco Vinicio. University of Cambridge; Estados Unidos Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Mecerreyes, David. Universidad del País Vasco; España Fil: Dominguez Alfaro, Antonio. University of Cambridge; Reino Unido Fil: Malliaras, George G.. University of Cambridge; Estados Unidos |
description |
The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns —flat, pyramidal, striped and wavy— to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine nterfaces. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/245913 Ruiz Mateos Serrano, Ruben; Aguzin, Ana; Mitoudi Vagourdi, Eleni; Tao, Xudong; Naegele, Tobias E.; et al.; 3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles; Elsevier; Biomaterials; 310; 122624; 10-2024; 1-11 0142-9612 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/245913 |
identifier_str_mv |
Ruiz Mateos Serrano, Ruben; Aguzin, Ana; Mitoudi Vagourdi, Eleni; Tao, Xudong; Naegele, Tobias E.; et al.; 3D printed PEDOT:PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles; Elsevier; Biomaterials; 310; 122624; 10-2024; 1-11 0142-9612 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0142961224001583 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biomaterials.2024.122624 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614141664296960 |
score |
13.070432 |