The low-mass end of the baryonic Tully-Fisher relation

Autores
Sales, Laura Virginia; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Santiago Ismael; Abadi, Mario Gabriel; Bower, Richard; Crain, Robert A.; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; White, Simon D. M.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The scaling of disc galaxy rotation velocity with baryonic mass (the 'baryonic Tully-Fisher' relation, BTF) has long confounded galaxy formation models. It is steeper than the M ∝ V3 scaling relating halo virial masses and circular velocities and its zero-point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such a vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in Λcold dark matter (CDM) simulations that match the size and number of galaxies as a function of stellarmass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. The scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below ~40 km s-1 seem to deviate from this prediction. We discuss observational biases and modelling uncertainties that may help to explain this disagreement in the context of ΛCDM models of dwarf galaxy formation.
Fil: Sales, Laura Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. University of California; Estados Unidos
Fil: Navarro, Julio F.. University of Victoria; Canadá
Fil: Oman, Kyle. University of Victoria; Canadá
Fil: Fattahi, Azadeh. University of Victoria; Canadá
Fil: Ferrero, Santiago Ismael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Bower, Richard. University of Durham; Reino Unido
Fil: Crain, Robert A.. Liverpool John Moores University. Astrophysics Research Institute; Reino Unido
Fil: Frenk, Carlos S.. University of Durham; Reino Unido
Fil: Sawala, Till. University of Helsinski; Finlandia
Fil: Schaller, Matthieu. University of Durham; Reino Unido
Fil: Schaye, Joop. Leiden University; Países Bajos
Fil: Theuns, Tom. University of Durham; Reino Unido
Fil: White, Simon D. M.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Materia
GALAXIES: EVOLUTION
GALAXIES: HALOES
GALAXIES: STRUCTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64144

id CONICETDig_1786c9f84e0611e7a1881230fa5eeb97
oai_identifier_str oai:ri.conicet.gov.ar:11336/64144
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The low-mass end of the baryonic Tully-Fisher relationSales, Laura VirginiaNavarro, Julio F.Oman, KyleFattahi, AzadehFerrero, Santiago IsmaelAbadi, Mario GabrielBower, RichardCrain, Robert A.Frenk, Carlos S.Sawala, TillSchaller, MatthieuSchaye, JoopTheuns, TomWhite, Simon D. M.GALAXIES: EVOLUTIONGALAXIES: HALOESGALAXIES: STRUCTUREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The scaling of disc galaxy rotation velocity with baryonic mass (the 'baryonic Tully-Fisher' relation, BTF) has long confounded galaxy formation models. It is steeper than the M ∝ V3 scaling relating halo virial masses and circular velocities and its zero-point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such a vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in Λcold dark matter (CDM) simulations that match the size and number of galaxies as a function of stellarmass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. The scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below ~40 km s-1 seem to deviate from this prediction. We discuss observational biases and modelling uncertainties that may help to explain this disagreement in the context of ΛCDM models of dwarf galaxy formation.Fil: Sales, Laura Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. University of California; Estados UnidosFil: Navarro, Julio F.. University of Victoria; CanadáFil: Oman, Kyle. University of Victoria; CanadáFil: Fattahi, Azadeh. University of Victoria; CanadáFil: Ferrero, Santiago Ismael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Bower, Richard. University of Durham; Reino UnidoFil: Crain, Robert A.. Liverpool John Moores University. Astrophysics Research Institute; Reino UnidoFil: Frenk, Carlos S.. University of Durham; Reino UnidoFil: Sawala, Till. University of Helsinski; FinlandiaFil: Schaller, Matthieu. University of Durham; Reino UnidoFil: Schaye, Joop. Leiden University; Países BajosFil: Theuns, Tom. University of Durham; Reino UnidoFil: White, Simon D. M.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; AlemaniaOxford University Press2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64144Sales, Laura Virginia; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Santiago Ismael; et al.; The low-mass end of the baryonic Tully-Fisher relation; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 464; 2; 1-2017; 2419-24280035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/464/2/2419/2404621/The-low-mass-end-of-the-baryonic-Tully-Fisher?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw2461info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.02155info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:48Zoai:ri.conicet.gov.ar:11336/64144instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:48.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The low-mass end of the baryonic Tully-Fisher relation
title The low-mass end of the baryonic Tully-Fisher relation
spellingShingle The low-mass end of the baryonic Tully-Fisher relation
Sales, Laura Virginia
GALAXIES: EVOLUTION
GALAXIES: HALOES
GALAXIES: STRUCTURE
title_short The low-mass end of the baryonic Tully-Fisher relation
title_full The low-mass end of the baryonic Tully-Fisher relation
title_fullStr The low-mass end of the baryonic Tully-Fisher relation
title_full_unstemmed The low-mass end of the baryonic Tully-Fisher relation
title_sort The low-mass end of the baryonic Tully-Fisher relation
dc.creator.none.fl_str_mv Sales, Laura Virginia
Navarro, Julio F.
Oman, Kyle
Fattahi, Azadeh
Ferrero, Santiago Ismael
Abadi, Mario Gabriel
Bower, Richard
Crain, Robert A.
Frenk, Carlos S.
Sawala, Till
Schaller, Matthieu
Schaye, Joop
Theuns, Tom
White, Simon D. M.
author Sales, Laura Virginia
author_facet Sales, Laura Virginia
Navarro, Julio F.
Oman, Kyle
Fattahi, Azadeh
Ferrero, Santiago Ismael
Abadi, Mario Gabriel
Bower, Richard
Crain, Robert A.
Frenk, Carlos S.
Sawala, Till
Schaller, Matthieu
Schaye, Joop
Theuns, Tom
White, Simon D. M.
author_role author
author2 Navarro, Julio F.
Oman, Kyle
Fattahi, Azadeh
Ferrero, Santiago Ismael
Abadi, Mario Gabriel
Bower, Richard
Crain, Robert A.
Frenk, Carlos S.
Sawala, Till
Schaller, Matthieu
Schaye, Joop
Theuns, Tom
White, Simon D. M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GALAXIES: EVOLUTION
GALAXIES: HALOES
GALAXIES: STRUCTURE
topic GALAXIES: EVOLUTION
GALAXIES: HALOES
GALAXIES: STRUCTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The scaling of disc galaxy rotation velocity with baryonic mass (the 'baryonic Tully-Fisher' relation, BTF) has long confounded galaxy formation models. It is steeper than the M ∝ V3 scaling relating halo virial masses and circular velocities and its zero-point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such a vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in Λcold dark matter (CDM) simulations that match the size and number of galaxies as a function of stellarmass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. The scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below ~40 km s-1 seem to deviate from this prediction. We discuss observational biases and modelling uncertainties that may help to explain this disagreement in the context of ΛCDM models of dwarf galaxy formation.
Fil: Sales, Laura Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. University of California; Estados Unidos
Fil: Navarro, Julio F.. University of Victoria; Canadá
Fil: Oman, Kyle. University of Victoria; Canadá
Fil: Fattahi, Azadeh. University of Victoria; Canadá
Fil: Ferrero, Santiago Ismael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Abadi, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Bower, Richard. University of Durham; Reino Unido
Fil: Crain, Robert A.. Liverpool John Moores University. Astrophysics Research Institute; Reino Unido
Fil: Frenk, Carlos S.. University of Durham; Reino Unido
Fil: Sawala, Till. University of Helsinski; Finlandia
Fil: Schaller, Matthieu. University of Durham; Reino Unido
Fil: Schaye, Joop. Leiden University; Países Bajos
Fil: Theuns, Tom. University of Durham; Reino Unido
Fil: White, Simon D. M.. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
description The scaling of disc galaxy rotation velocity with baryonic mass (the 'baryonic Tully-Fisher' relation, BTF) has long confounded galaxy formation models. It is steeper than the M ∝ V3 scaling relating halo virial masses and circular velocities and its zero-point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such a vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in Λcold dark matter (CDM) simulations that match the size and number of galaxies as a function of stellarmass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. The scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below ~40 km s-1 seem to deviate from this prediction. We discuss observational biases and modelling uncertainties that may help to explain this disagreement in the context of ΛCDM models of dwarf galaxy formation.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64144
Sales, Laura Virginia; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Santiago Ismael; et al.; The low-mass end of the baryonic Tully-Fisher relation; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 464; 2; 1-2017; 2419-2428
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64144
identifier_str_mv Sales, Laura Virginia; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Santiago Ismael; et al.; The low-mass end of the baryonic Tully-Fisher relation; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 464; 2; 1-2017; 2419-2428
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/464/2/2419/2404621/The-low-mass-end-of-the-baryonic-Tully-Fisher?redirectedFrom=fulltext
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw2461
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.02155
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083181279707136
score 13.22299