Effect of solar cycle 23 in foF2 trend estimation
- Autores
- Elias, Ana Georgina; de Haro Barbás, Blas F.; Shibasaki, Kiyoto; Souza, Jonas R.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The effect of including solar cycle 23 in foF2 trend estimation is assessed using experimental values for Slough (51.5°N, 359.4°E) and Kokobunji (35.7°N, 139.5°E), and values obtained from two models: (1) the Sheffield University Plasmasphere-Ionosphere model, SUPIM, and (2) the International Reference Ionosphere, IRI. The dominant influence on the F2 layer is solar extreme ultraviolet (EUV) radiation, evinced by the almost 90% variance of its parameters explained by solar EUV proxies such as the solar activity indices Rz and F10.7. This makes necessary to filter out solar activity effects prior to long-term trend estimation. Solar cycle 23 seems to have had an EUV emission different from that deduced from traditional solar EUV proxies. During maximum and descending phase of the cycle, Rz and F10.7 seem to underestimate EUV solar radiation, while during minimum, they overestimate EUV levels. Including this solar cycle in trend estimations then, and using traditional filtering techniques, may induce some spurious results. In the present work, filtering is done in the usual way considering the residuals of the linear regression between foF2 and F10.7, for both experimental and modeled values. foF2 trends become less negative as we include years after 2000, since foF2 systematically exceeds the values predicted by a linear fit between foF2 and F10.7. Trends become more negative again when solar cycle 23 minimum is included, since for this period, foF2 is systematically lower than values predicted by the linear fit. foF2 trends assessed with modeled foF2 values are less strong than those obtained with experimental foF2 values and more stable as solar cycle 23 is included in the trend estimation. Modeled trends may be thought of as a ‘zero level’ trend due to the assumptions made in the process of trend estimation considering also that we are not dealing with ideal conditions or infinite time series.
Fil: Elias, Ana Georgina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Haro Barbás, Blas F.. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentina
Fil: Shibasaki, Kiyoto . Nobeyama Solar Radio Observatory; Japón
Fil: Souza, Jonas R.. Centro de Previsao de Tempo E Estudos Climaticos. Instituto Nacional de Pesquisas Espaciais; Brasil - Materia
-
Ionospheric trends
Solar cycle 23
EUV proxies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12585
Ver los metadatos del registro completo
id |
CONICETDig_171eb588464f3c220c3564229b99a010 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12585 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effect of solar cycle 23 in foF2 trend estimationElias, Ana Georginade Haro Barbás, Blas F.Shibasaki, Kiyoto Souza, Jonas R.Ionospheric trendsSolar cycle 23EUV proxieshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The effect of including solar cycle 23 in foF2 trend estimation is assessed using experimental values for Slough (51.5°N, 359.4°E) and Kokobunji (35.7°N, 139.5°E), and values obtained from two models: (1) the Sheffield University Plasmasphere-Ionosphere model, SUPIM, and (2) the International Reference Ionosphere, IRI. The dominant influence on the F2 layer is solar extreme ultraviolet (EUV) radiation, evinced by the almost 90% variance of its parameters explained by solar EUV proxies such as the solar activity indices Rz and F10.7. This makes necessary to filter out solar activity effects prior to long-term trend estimation. Solar cycle 23 seems to have had an EUV emission different from that deduced from traditional solar EUV proxies. During maximum and descending phase of the cycle, Rz and F10.7 seem to underestimate EUV solar radiation, while during minimum, they overestimate EUV levels. Including this solar cycle in trend estimations then, and using traditional filtering techniques, may induce some spurious results. In the present work, filtering is done in the usual way considering the residuals of the linear regression between foF2 and F10.7, for both experimental and modeled values. foF2 trends become less negative as we include years after 2000, since foF2 systematically exceeds the values predicted by a linear fit between foF2 and F10.7. Trends become more negative again when solar cycle 23 minimum is included, since for this period, foF2 is systematically lower than values predicted by the linear fit. foF2 trends assessed with modeled foF2 values are less strong than those obtained with experimental foF2 values and more stable as solar cycle 23 is included in the trend estimation. Modeled trends may be thought of as a ‘zero level’ trend due to the assumptions made in the process of trend estimation considering also that we are not dealing with ideal conditions or infinite time series.Fil: Elias, Ana Georgina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Haro Barbás, Blas F.. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; ArgentinaFil: Shibasaki, Kiyoto . Nobeyama Solar Radio Observatory; JapónFil: Souza, Jonas R.. Centro de Previsao de Tempo E Estudos Climaticos. Instituto Nacional de Pesquisas Espaciais; BrasilSpringer2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12585Elias, Ana Georgina; de Haro Barbás, Blas F.; Shibasaki, Kiyoto ; Souza, Jonas R.; Effect of solar cycle 23 in foF2 trend estimation; Springer; Earth Planets And Space; 66; 111; 9-2014; 1-51880-5981enginfo:eu-repo/semantics/altIdentifier/url/https://earth-planets-space.springeropen.com/articles/10.1186/1880-5981-66-111info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1186/1880-5981-66-111info:eu-repo/semantics/altIdentifier/doi/10.1186/1880-5981-66-111info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:50Zoai:ri.conicet.gov.ar:11336/12585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:50.315CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effect of solar cycle 23 in foF2 trend estimation |
title |
Effect of solar cycle 23 in foF2 trend estimation |
spellingShingle |
Effect of solar cycle 23 in foF2 trend estimation Elias, Ana Georgina Ionospheric trends Solar cycle 23 EUV proxies |
title_short |
Effect of solar cycle 23 in foF2 trend estimation |
title_full |
Effect of solar cycle 23 in foF2 trend estimation |
title_fullStr |
Effect of solar cycle 23 in foF2 trend estimation |
title_full_unstemmed |
Effect of solar cycle 23 in foF2 trend estimation |
title_sort |
Effect of solar cycle 23 in foF2 trend estimation |
dc.creator.none.fl_str_mv |
Elias, Ana Georgina de Haro Barbás, Blas F. Shibasaki, Kiyoto Souza, Jonas R. |
author |
Elias, Ana Georgina |
author_facet |
Elias, Ana Georgina de Haro Barbás, Blas F. Shibasaki, Kiyoto Souza, Jonas R. |
author_role |
author |
author2 |
de Haro Barbás, Blas F. Shibasaki, Kiyoto Souza, Jonas R. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ionospheric trends Solar cycle 23 EUV proxies |
topic |
Ionospheric trends Solar cycle 23 EUV proxies |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The effect of including solar cycle 23 in foF2 trend estimation is assessed using experimental values for Slough (51.5°N, 359.4°E) and Kokobunji (35.7°N, 139.5°E), and values obtained from two models: (1) the Sheffield University Plasmasphere-Ionosphere model, SUPIM, and (2) the International Reference Ionosphere, IRI. The dominant influence on the F2 layer is solar extreme ultraviolet (EUV) radiation, evinced by the almost 90% variance of its parameters explained by solar EUV proxies such as the solar activity indices Rz and F10.7. This makes necessary to filter out solar activity effects prior to long-term trend estimation. Solar cycle 23 seems to have had an EUV emission different from that deduced from traditional solar EUV proxies. During maximum and descending phase of the cycle, Rz and F10.7 seem to underestimate EUV solar radiation, while during minimum, they overestimate EUV levels. Including this solar cycle in trend estimations then, and using traditional filtering techniques, may induce some spurious results. In the present work, filtering is done in the usual way considering the residuals of the linear regression between foF2 and F10.7, for both experimental and modeled values. foF2 trends become less negative as we include years after 2000, since foF2 systematically exceeds the values predicted by a linear fit between foF2 and F10.7. Trends become more negative again when solar cycle 23 minimum is included, since for this period, foF2 is systematically lower than values predicted by the linear fit. foF2 trends assessed with modeled foF2 values are less strong than those obtained with experimental foF2 values and more stable as solar cycle 23 is included in the trend estimation. Modeled trends may be thought of as a ‘zero level’ trend due to the assumptions made in the process of trend estimation considering also that we are not dealing with ideal conditions or infinite time series. Fil: Elias, Ana Georgina. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Haro Barbás, Blas F.. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Departamento de Fisica; Argentina Fil: Shibasaki, Kiyoto . Nobeyama Solar Radio Observatory; Japón Fil: Souza, Jonas R.. Centro de Previsao de Tempo E Estudos Climaticos. Instituto Nacional de Pesquisas Espaciais; Brasil |
description |
The effect of including solar cycle 23 in foF2 trend estimation is assessed using experimental values for Slough (51.5°N, 359.4°E) and Kokobunji (35.7°N, 139.5°E), and values obtained from two models: (1) the Sheffield University Plasmasphere-Ionosphere model, SUPIM, and (2) the International Reference Ionosphere, IRI. The dominant influence on the F2 layer is solar extreme ultraviolet (EUV) radiation, evinced by the almost 90% variance of its parameters explained by solar EUV proxies such as the solar activity indices Rz and F10.7. This makes necessary to filter out solar activity effects prior to long-term trend estimation. Solar cycle 23 seems to have had an EUV emission different from that deduced from traditional solar EUV proxies. During maximum and descending phase of the cycle, Rz and F10.7 seem to underestimate EUV solar radiation, while during minimum, they overestimate EUV levels. Including this solar cycle in trend estimations then, and using traditional filtering techniques, may induce some spurious results. In the present work, filtering is done in the usual way considering the residuals of the linear regression between foF2 and F10.7, for both experimental and modeled values. foF2 trends become less negative as we include years after 2000, since foF2 systematically exceeds the values predicted by a linear fit between foF2 and F10.7. Trends become more negative again when solar cycle 23 minimum is included, since for this period, foF2 is systematically lower than values predicted by the linear fit. foF2 trends assessed with modeled foF2 values are less strong than those obtained with experimental foF2 values and more stable as solar cycle 23 is included in the trend estimation. Modeled trends may be thought of as a ‘zero level’ trend due to the assumptions made in the process of trend estimation considering also that we are not dealing with ideal conditions or infinite time series. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12585 Elias, Ana Georgina; de Haro Barbás, Blas F.; Shibasaki, Kiyoto ; Souza, Jonas R.; Effect of solar cycle 23 in foF2 trend estimation; Springer; Earth Planets And Space; 66; 111; 9-2014; 1-5 1880-5981 |
url |
http://hdl.handle.net/11336/12585 |
identifier_str_mv |
Elias, Ana Georgina; de Haro Barbás, Blas F.; Shibasaki, Kiyoto ; Souza, Jonas R.; Effect of solar cycle 23 in foF2 trend estimation; Springer; Earth Planets And Space; 66; 111; 9-2014; 1-5 1880-5981 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://earth-planets-space.springeropen.com/articles/10.1186/1880-5981-66-111 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1186/1880-5981-66-111 info:eu-repo/semantics/altIdentifier/doi/10.1186/1880-5981-66-111 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614510636171264 |
score |
13.070432 |