Modelling the interplay of SARS-CoV-2 variants in the United Kingdom
- Autores
- Barreiro, Nadia Luisina; Govezensky, T.; Ventura, Cecilia Ileana; Nuñez, Matias; Bolcatto, Pablo Guillermo; Barrio, R. A.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many COVID-19 vaccines are proving to be highly effective to prevent severe disease and to diminish infections. Their uneven geographical distribution favors the appearance of new variants of concern, as the highly transmissible Delta variant, affecting particularly non-vaccinated people. It is important to device reliable models to analyze the spread of the different variants. A key factor is to consider the effects of vaccination as well as other measures used to contain the pandemic like social behaviour. The stochastic geographical model presented here, fulfills these requirements. It is based on an extended compartmental model that includes various strains and vaccination strategies, allowing to study the emergence and dynamics of the new COVID-19 variants. The model conveniently separates the parameters related to the disease from the ones related to social behavior and mobility restrictions. We applied the model to the United Kingdom by using available data to fit the recurrence of the currently prevalent variants. Our computer simulations allow to describe the appearance of periodic waves and the features that determine the prevalence of certain variants. They also provide useful predictions to help planning future vaccination boosters. We stress that the model could be applied to any other country of interest.
Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina
Fil: Govezensky, T.. Universidad Nacional Autónoma de México; México
Fil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Nuñez, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Bolcatto, Pablo Guillermo. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Barrio, R. A.. Universidad Nacional Autónoma de México; México - Materia
-
COVID-19
Vaccines
Strains
United Kingdom - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202320
Ver los metadatos del registro completo
id |
CONICETDig_1655895f7e65a2e77365049a81e0bda1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202320 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modelling the interplay of SARS-CoV-2 variants in the United KingdomBarreiro, Nadia LuisinaGovezensky, T.Ventura, Cecilia IleanaNuñez, MatiasBolcatto, Pablo GuillermoBarrio, R. A.COVID-19VaccinesStrainsUnited Kingdomhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Many COVID-19 vaccines are proving to be highly effective to prevent severe disease and to diminish infections. Their uneven geographical distribution favors the appearance of new variants of concern, as the highly transmissible Delta variant, affecting particularly non-vaccinated people. It is important to device reliable models to analyze the spread of the different variants. A key factor is to consider the effects of vaccination as well as other measures used to contain the pandemic like social behaviour. The stochastic geographical model presented here, fulfills these requirements. It is based on an extended compartmental model that includes various strains and vaccination strategies, allowing to study the emergence and dynamics of the new COVID-19 variants. The model conveniently separates the parameters related to the disease from the ones related to social behavior and mobility restrictions. We applied the model to the United Kingdom by using available data to fit the recurrence of the currently prevalent variants. Our computer simulations allow to describe the appearance of periodic waves and the features that determine the prevalence of certain variants. They also provide useful predictions to help planning future vaccination boosters. We stress that the model could be applied to any other country of interest.Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; ArgentinaFil: Govezensky, T.. Universidad Nacional Autónoma de México; MéxicoFil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Nuñez, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Bolcatto, Pablo Guillermo. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Barrio, R. A.. Universidad Nacional Autónoma de México; MéxicoNature2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202320Barreiro, Nadia Luisina; Govezensky, T.; Ventura, Cecilia Ileana; Nuñez, Matias; Bolcatto, Pablo Guillermo; et al.; Modelling the interplay of SARS-CoV-2 variants in the United Kingdom; Nature; Scientific Reports; 12; 1; 12-2022; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-16147-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:35Zoai:ri.conicet.gov.ar:11336/202320instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:36.273CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
title |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
spellingShingle |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom Barreiro, Nadia Luisina COVID-19 Vaccines Strains United Kingdom |
title_short |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
title_full |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
title_fullStr |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
title_full_unstemmed |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
title_sort |
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom |
dc.creator.none.fl_str_mv |
Barreiro, Nadia Luisina Govezensky, T. Ventura, Cecilia Ileana Nuñez, Matias Bolcatto, Pablo Guillermo Barrio, R. A. |
author |
Barreiro, Nadia Luisina |
author_facet |
Barreiro, Nadia Luisina Govezensky, T. Ventura, Cecilia Ileana Nuñez, Matias Bolcatto, Pablo Guillermo Barrio, R. A. |
author_role |
author |
author2 |
Govezensky, T. Ventura, Cecilia Ileana Nuñez, Matias Bolcatto, Pablo Guillermo Barrio, R. A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COVID-19 Vaccines Strains United Kingdom |
topic |
COVID-19 Vaccines Strains United Kingdom |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Many COVID-19 vaccines are proving to be highly effective to prevent severe disease and to diminish infections. Their uneven geographical distribution favors the appearance of new variants of concern, as the highly transmissible Delta variant, affecting particularly non-vaccinated people. It is important to device reliable models to analyze the spread of the different variants. A key factor is to consider the effects of vaccination as well as other measures used to contain the pandemic like social behaviour. The stochastic geographical model presented here, fulfills these requirements. It is based on an extended compartmental model that includes various strains and vaccination strategies, allowing to study the emergence and dynamics of the new COVID-19 variants. The model conveniently separates the parameters related to the disease from the ones related to social behavior and mobility restrictions. We applied the model to the United Kingdom by using available data to fit the recurrence of the currently prevalent variants. Our computer simulations allow to describe the appearance of periodic waves and the features that determine the prevalence of certain variants. They also provide useful predictions to help planning future vaccination boosters. We stress that the model could be applied to any other country of interest. Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina Fil: Govezensky, T.. Universidad Nacional Autónoma de México; México Fil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Nuñez, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Bolcatto, Pablo Guillermo. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Barrio, R. A.. Universidad Nacional Autónoma de México; México |
description |
Many COVID-19 vaccines are proving to be highly effective to prevent severe disease and to diminish infections. Their uneven geographical distribution favors the appearance of new variants of concern, as the highly transmissible Delta variant, affecting particularly non-vaccinated people. It is important to device reliable models to analyze the spread of the different variants. A key factor is to consider the effects of vaccination as well as other measures used to contain the pandemic like social behaviour. The stochastic geographical model presented here, fulfills these requirements. It is based on an extended compartmental model that includes various strains and vaccination strategies, allowing to study the emergence and dynamics of the new COVID-19 variants. The model conveniently separates the parameters related to the disease from the ones related to social behavior and mobility restrictions. We applied the model to the United Kingdom by using available data to fit the recurrence of the currently prevalent variants. Our computer simulations allow to describe the appearance of periodic waves and the features that determine the prevalence of certain variants. They also provide useful predictions to help planning future vaccination boosters. We stress that the model could be applied to any other country of interest. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202320 Barreiro, Nadia Luisina; Govezensky, T.; Ventura, Cecilia Ileana; Nuñez, Matias; Bolcatto, Pablo Guillermo; et al.; Modelling the interplay of SARS-CoV-2 variants in the United Kingdom; Nature; Scientific Reports; 12; 1; 12-2022; 1-8 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/202320 |
identifier_str_mv |
Barreiro, Nadia Luisina; Govezensky, T.; Ventura, Cecilia Ileana; Nuñez, Matias; Bolcatto, Pablo Guillermo; et al.; Modelling the interplay of SARS-CoV-2 variants in the United Kingdom; Nature; Scientific Reports; 12; 1; 12-2022; 1-8 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-16147-w |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614267400093696 |
score |
13.070432 |