Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models
- Autores
- Kisbye, Noemí Patricia; Meier, Karem
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nelson and Siegel curves are widely used to fit the observed term structure of interest rates in a particular date. By the other hand, several interest rate models have been developed such their initial forward rate curve can be adjusted to any observed data, as the Ho-Lee and the Hull and White one factor models. In this work we study the evolution of the forward curve process for each of these models assuming that the initial curve is of Nelson-Siegel type. We conclude that the forward curve process produces curves belonging to a parametric family of curves that can be seen as extended Nelson and Siegel curves. We show that the forward rate curve evolution has a linear or an exponential growth, depending on the particular short rate interest model. We applied the results to Argentinian short and forward rates obtained from the Lebac?s bills yields using the Hull and White short rate model, showing a good estimation of the observed forward rate curve for near dates when the initial forward curve is adjusted with a Nelson and Siegel one.
Fil: Kisbye, Noemí Patricia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Meier, Karem. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
NELSON SIEGEL CURVES
SHORT RATE INTEREST MODELS
CONSISTENCY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85886
Ver los metadatos del registro completo
id |
CONICETDig_163848a6e08a1171f41901ab76a7873f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85886 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate ModelsKisbye, Noemí PatriciaMeier, KaremNELSON SIEGEL CURVESSHORT RATE INTEREST MODELSCONSISTENCYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Nelson and Siegel curves are widely used to fit the observed term structure of interest rates in a particular date. By the other hand, several interest rate models have been developed such their initial forward rate curve can be adjusted to any observed data, as the Ho-Lee and the Hull and White one factor models. In this work we study the evolution of the forward curve process for each of these models assuming that the initial curve is of Nelson-Siegel type. We conclude that the forward curve process produces curves belonging to a parametric family of curves that can be seen as extended Nelson and Siegel curves. We show that the forward rate curve evolution has a linear or an exponential growth, depending on the particular short rate interest model. We applied the results to Argentinian short and forward rates obtained from the Lebac?s bills yields using the Hull and White short rate model, showing a good estimation of the observed forward rate curve for near dates when the initial forward curve is adjusted with a Nelson and Siegel one.Fil: Kisbye, Noemí Patricia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Meier, Karem. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaScientific Research Publishing2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85886Kisbye, Noemí Patricia; Meier, Karem; Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models; Scientific Research Publishing; Journal of Mathematical Finance; 7; 4; 11-2017; 919-9332162-24342162-2442CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jmf.2017.74050info:eu-repo/semantics/altIdentifier/doi/10.4236/jmf.2017.74050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:51Zoai:ri.conicet.gov.ar:11336/85886instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:51.703CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
title |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
spellingShingle |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models Kisbye, Noemí Patricia NELSON SIEGEL CURVES SHORT RATE INTEREST MODELS CONSISTENCY |
title_short |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
title_full |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
title_fullStr |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
title_full_unstemmed |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
title_sort |
Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models |
dc.creator.none.fl_str_mv |
Kisbye, Noemí Patricia Meier, Karem |
author |
Kisbye, Noemí Patricia |
author_facet |
Kisbye, Noemí Patricia Meier, Karem |
author_role |
author |
author2 |
Meier, Karem |
author2_role |
author |
dc.subject.none.fl_str_mv |
NELSON SIEGEL CURVES SHORT RATE INTEREST MODELS CONSISTENCY |
topic |
NELSON SIEGEL CURVES SHORT RATE INTEREST MODELS CONSISTENCY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nelson and Siegel curves are widely used to fit the observed term structure of interest rates in a particular date. By the other hand, several interest rate models have been developed such their initial forward rate curve can be adjusted to any observed data, as the Ho-Lee and the Hull and White one factor models. In this work we study the evolution of the forward curve process for each of these models assuming that the initial curve is of Nelson-Siegel type. We conclude that the forward curve process produces curves belonging to a parametric family of curves that can be seen as extended Nelson and Siegel curves. We show that the forward rate curve evolution has a linear or an exponential growth, depending on the particular short rate interest model. We applied the results to Argentinian short and forward rates obtained from the Lebac?s bills yields using the Hull and White short rate model, showing a good estimation of the observed forward rate curve for near dates when the initial forward curve is adjusted with a Nelson and Siegel one. Fil: Kisbye, Noemí Patricia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Meier, Karem. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Nelson and Siegel curves are widely used to fit the observed term structure of interest rates in a particular date. By the other hand, several interest rate models have been developed such their initial forward rate curve can be adjusted to any observed data, as the Ho-Lee and the Hull and White one factor models. In this work we study the evolution of the forward curve process for each of these models assuming that the initial curve is of Nelson-Siegel type. We conclude that the forward curve process produces curves belonging to a parametric family of curves that can be seen as extended Nelson and Siegel curves. We show that the forward rate curve evolution has a linear or an exponential growth, depending on the particular short rate interest model. We applied the results to Argentinian short and forward rates obtained from the Lebac?s bills yields using the Hull and White short rate model, showing a good estimation of the observed forward rate curve for near dates when the initial forward curve is adjusted with a Nelson and Siegel one. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85886 Kisbye, Noemí Patricia; Meier, Karem; Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models; Scientific Research Publishing; Journal of Mathematical Finance; 7; 4; 11-2017; 919-933 2162-2434 2162-2442 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85886 |
identifier_str_mv |
Kisbye, Noemí Patricia; Meier, Karem; Consistency of Extended Nelson-Siegel Curve Families with the Ho-Lee and Hull and White Short Rate Models; Scientific Research Publishing; Journal of Mathematical Finance; 7; 4; 11-2017; 919-933 2162-2434 2162-2442 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jmf.2017.74050 info:eu-repo/semantics/altIdentifier/doi/10.4236/jmf.2017.74050 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing |
publisher.none.fl_str_mv |
Scientific Research Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268885987885056 |
score |
13.13397 |