Applying the technology acceptance model to evaluation of recommender systems
- Autores
- Armentano, Marcelo Gabriel; Christensen, Ingrid Alina; Schiaffino, Silvia Noemi
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In general, the study of recommender systems emphasizes the efficiency of techniques to provide accurate recommendations rather than factors influencing users' acceptance of the system; however, accuracy alone cannot account for users' satisfying experience. Bearing in mind this gap in the research, we apply the technology acceptance model (TAM) to evaluate user acceptance of a recommender system in the movies domain. Within the basic TAM model, we incorporate a new latent variable representing self-assessed user skills to use a recommender system. The experiment included 116 users who answered a satisfaction survey after using a movie recommender system. The results evince that perceived usefulness of the system has more impact than perceived ease of use to motivate acceptance of recommendations. Additionally, users' previous skills strongly influence perceived ease of use, which directly impacts on perceived usefulness of the system. These findings can assist developers of recommender systems in their attempt to maximize users' experience.
Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Christensen, Ingrid Alina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
RECOMMENDER SYSTEMS
EVALUATION
USER ACCEPTANCE
TECHNOLOGY ACCEPTANCE MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6821
Ver los metadatos del registro completo
id |
CONICETDig_15da0c7175713ff9d4af22d9991ae2b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6821 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Applying the technology acceptance model to evaluation of recommender systemsArmentano, Marcelo GabrielChristensen, Ingrid AlinaSchiaffino, Silvia NoemiRECOMMENDER SYSTEMSEVALUATIONUSER ACCEPTANCETECHNOLOGY ACCEPTANCE MODELhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In general, the study of recommender systems emphasizes the efficiency of techniques to provide accurate recommendations rather than factors influencing users' acceptance of the system; however, accuracy alone cannot account for users' satisfying experience. Bearing in mind this gap in the research, we apply the technology acceptance model (TAM) to evaluate user acceptance of a recommender system in the movies domain. Within the basic TAM model, we incorporate a new latent variable representing self-assessed user skills to use a recommender system. The experiment included 116 users who answered a satisfaction survey after using a movie recommender system. The results evince that perceived usefulness of the system has more impact than perceived ease of use to motivate acceptance of recommendations. Additionally, users' previous skills strongly influence perceived ease of use, which directly impacts on perceived usefulness of the system. These findings can assist developers of recommender systems in their attempt to maximize users' experience.Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Christensen, Ingrid Alina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaCenter for Technological Design and Development in Computer Science2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6821Armentano, Marcelo Gabriel; Christensen, Ingrid Alina; Schiaffino, Silvia Noemi; Applying the technology acceptance model to evaluation of recommender systems; Center for Technological Design and Development in Computer Science; Polibits; 51; 6-2015; 73-791870-9044enginfo:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=402641203011info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/9gyp7yinfo:eu-repo/semantics/altIdentifier/doi/10.17562/PB-51-10info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:37Zoai:ri.conicet.gov.ar:11336/6821instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:37.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Applying the technology acceptance model to evaluation of recommender systems |
title |
Applying the technology acceptance model to evaluation of recommender systems |
spellingShingle |
Applying the technology acceptance model to evaluation of recommender systems Armentano, Marcelo Gabriel RECOMMENDER SYSTEMS EVALUATION USER ACCEPTANCE TECHNOLOGY ACCEPTANCE MODEL |
title_short |
Applying the technology acceptance model to evaluation of recommender systems |
title_full |
Applying the technology acceptance model to evaluation of recommender systems |
title_fullStr |
Applying the technology acceptance model to evaluation of recommender systems |
title_full_unstemmed |
Applying the technology acceptance model to evaluation of recommender systems |
title_sort |
Applying the technology acceptance model to evaluation of recommender systems |
dc.creator.none.fl_str_mv |
Armentano, Marcelo Gabriel Christensen, Ingrid Alina Schiaffino, Silvia Noemi |
author |
Armentano, Marcelo Gabriel |
author_facet |
Armentano, Marcelo Gabriel Christensen, Ingrid Alina Schiaffino, Silvia Noemi |
author_role |
author |
author2 |
Christensen, Ingrid Alina Schiaffino, Silvia Noemi |
author2_role |
author author |
dc.subject.none.fl_str_mv |
RECOMMENDER SYSTEMS EVALUATION USER ACCEPTANCE TECHNOLOGY ACCEPTANCE MODEL |
topic |
RECOMMENDER SYSTEMS EVALUATION USER ACCEPTANCE TECHNOLOGY ACCEPTANCE MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In general, the study of recommender systems emphasizes the efficiency of techniques to provide accurate recommendations rather than factors influencing users' acceptance of the system; however, accuracy alone cannot account for users' satisfying experience. Bearing in mind this gap in the research, we apply the technology acceptance model (TAM) to evaluate user acceptance of a recommender system in the movies domain. Within the basic TAM model, we incorporate a new latent variable representing self-assessed user skills to use a recommender system. The experiment included 116 users who answered a satisfaction survey after using a movie recommender system. The results evince that perceived usefulness of the system has more impact than perceived ease of use to motivate acceptance of recommendations. Additionally, users' previous skills strongly influence perceived ease of use, which directly impacts on perceived usefulness of the system. These findings can assist developers of recommender systems in their attempt to maximize users' experience. Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Christensen, Ingrid Alina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
In general, the study of recommender systems emphasizes the efficiency of techniques to provide accurate recommendations rather than factors influencing users' acceptance of the system; however, accuracy alone cannot account for users' satisfying experience. Bearing in mind this gap in the research, we apply the technology acceptance model (TAM) to evaluate user acceptance of a recommender system in the movies domain. Within the basic TAM model, we incorporate a new latent variable representing self-assessed user skills to use a recommender system. The experiment included 116 users who answered a satisfaction survey after using a movie recommender system. The results evince that perceived usefulness of the system has more impact than perceived ease of use to motivate acceptance of recommendations. Additionally, users' previous skills strongly influence perceived ease of use, which directly impacts on perceived usefulness of the system. These findings can assist developers of recommender systems in their attempt to maximize users' experience. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6821 Armentano, Marcelo Gabriel; Christensen, Ingrid Alina; Schiaffino, Silvia Noemi; Applying the technology acceptance model to evaluation of recommender systems; Center for Technological Design and Development in Computer Science; Polibits; 51; 6-2015; 73-79 1870-9044 |
url |
http://hdl.handle.net/11336/6821 |
identifier_str_mv |
Armentano, Marcelo Gabriel; Christensen, Ingrid Alina; Schiaffino, Silvia Noemi; Applying the technology acceptance model to evaluation of recommender systems; Center for Technological Design and Development in Computer Science; Polibits; 51; 6-2015; 73-79 1870-9044 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=402641203011 info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/9gyp7y info:eu-repo/semantics/altIdentifier/doi/10.17562/PB-51-10 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Center for Technological Design and Development in Computer Science |
publisher.none.fl_str_mv |
Center for Technological Design and Development in Computer Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614447746777088 |
score |
13.070432 |