Synthesis and characterization of lithiated nanostructures
- Autores
- Brusilovsky, David Leopoldo; Cabello, Federico
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Regardless of the simple accumulation of ions in the crystal insertion sites, nanomaterials offer a new storage mechanism of lithium ions (Li+), these storage mechanisms are formed in the interfaces and inside of the nanopores. Such kinds of storage mechanisms have no effect on the structure of the electrode material. Consequently, the charge-discharge process can continue for prolonged times. Note that singular novel nanomaterials can be developed in various shapes (rods, plates, tubes, particles, etc.) and dimensions (e.g. 0D, 1D, 2D, 3D). Each of these different possibilities of shapes and dimensions offers its specific advantages and disadvantages. Therefore, a large variety of morphological structures offering increased quantity and availability of storage sites for Li+ could be designed. In this work nanoparticles of lithiated oxide of transition metals have been synthesized and characterized. The synthesis of crystalline nanostructures generally requires a heat treatment, which involves controlled synthesis conditions. The synthesis of nanoparticles was based on the non-hydrolytic sol-gel method, considering acetates as chemical precursors. This approach presents an alternative to the usual sol-gel hydrolytic routes. Non hydrolytic methods in particular lead to improved control over the homogeneity and stoichiomtry level for multiple oxides components. The crystal structure of the nanocrystals was determined by X-ray diffraction (XRD). The morphology, the size and the composition of the particles were analyzed by using a scanning electron microscope equipped with a microprobe for energy dispersive X-ray spectroscopy.
Fil: Brusilovsky, David Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Cabello, Federico. Universidad Nacional de Misiones; Argentina - Materia
-
BATTERIES
LITHIUM-ION
SOL-GEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87107
Ver los metadatos del registro completo
id |
CONICETDig_151dffb0ee3af64d985a5ccb244f5173 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87107 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Synthesis and characterization of lithiated nanostructuresBrusilovsky, David LeopoldoCabello, FedericoBATTERIESLITHIUM-IONSOL-GELhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Regardless of the simple accumulation of ions in the crystal insertion sites, nanomaterials offer a new storage mechanism of lithium ions (Li+), these storage mechanisms are formed in the interfaces and inside of the nanopores. Such kinds of storage mechanisms have no effect on the structure of the electrode material. Consequently, the charge-discharge process can continue for prolonged times. Note that singular novel nanomaterials can be developed in various shapes (rods, plates, tubes, particles, etc.) and dimensions (e.g. 0D, 1D, 2D, 3D). Each of these different possibilities of shapes and dimensions offers its specific advantages and disadvantages. Therefore, a large variety of morphological structures offering increased quantity and availability of storage sites for Li+ could be designed. In this work nanoparticles of lithiated oxide of transition metals have been synthesized and characterized. The synthesis of crystalline nanostructures generally requires a heat treatment, which involves controlled synthesis conditions. The synthesis of nanoparticles was based on the non-hydrolytic sol-gel method, considering acetates as chemical precursors. This approach presents an alternative to the usual sol-gel hydrolytic routes. Non hydrolytic methods in particular lead to improved control over the homogeneity and stoichiomtry level for multiple oxides components. The crystal structure of the nanocrystals was determined by X-ray diffraction (XRD). The morphology, the size and the composition of the particles were analyzed by using a scanning electron microscope equipped with a microprobe for energy dispersive X-ray spectroscopy.Fil: Brusilovsky, David Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Cabello, Federico. Universidad Nacional de Misiones; ArgentinaUniversidade Federal do Rio de Janeiro2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87107Brusilovsky, David Leopoldo; Cabello, Federico; Synthesis and characterization of lithiated nanostructures; Universidade Federal do Rio de Janeiro; Matéria; 23; 2; 7-2018; 1-41517-70761517-7076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/S1517-707620180002.0472info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/48b8fginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:40Zoai:ri.conicet.gov.ar:11336/87107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:40.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Synthesis and characterization of lithiated nanostructures |
title |
Synthesis and characterization of lithiated nanostructures |
spellingShingle |
Synthesis and characterization of lithiated nanostructures Brusilovsky, David Leopoldo BATTERIES LITHIUM-ION SOL-GEL |
title_short |
Synthesis and characterization of lithiated nanostructures |
title_full |
Synthesis and characterization of lithiated nanostructures |
title_fullStr |
Synthesis and characterization of lithiated nanostructures |
title_full_unstemmed |
Synthesis and characterization of lithiated nanostructures |
title_sort |
Synthesis and characterization of lithiated nanostructures |
dc.creator.none.fl_str_mv |
Brusilovsky, David Leopoldo Cabello, Federico |
author |
Brusilovsky, David Leopoldo |
author_facet |
Brusilovsky, David Leopoldo Cabello, Federico |
author_role |
author |
author2 |
Cabello, Federico |
author2_role |
author |
dc.subject.none.fl_str_mv |
BATTERIES LITHIUM-ION SOL-GEL |
topic |
BATTERIES LITHIUM-ION SOL-GEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Regardless of the simple accumulation of ions in the crystal insertion sites, nanomaterials offer a new storage mechanism of lithium ions (Li+), these storage mechanisms are formed in the interfaces and inside of the nanopores. Such kinds of storage mechanisms have no effect on the structure of the electrode material. Consequently, the charge-discharge process can continue for prolonged times. Note that singular novel nanomaterials can be developed in various shapes (rods, plates, tubes, particles, etc.) and dimensions (e.g. 0D, 1D, 2D, 3D). Each of these different possibilities of shapes and dimensions offers its specific advantages and disadvantages. Therefore, a large variety of morphological structures offering increased quantity and availability of storage sites for Li+ could be designed. In this work nanoparticles of lithiated oxide of transition metals have been synthesized and characterized. The synthesis of crystalline nanostructures generally requires a heat treatment, which involves controlled synthesis conditions. The synthesis of nanoparticles was based on the non-hydrolytic sol-gel method, considering acetates as chemical precursors. This approach presents an alternative to the usual sol-gel hydrolytic routes. Non hydrolytic methods in particular lead to improved control over the homogeneity and stoichiomtry level for multiple oxides components. The crystal structure of the nanocrystals was determined by X-ray diffraction (XRD). The morphology, the size and the composition of the particles were analyzed by using a scanning electron microscope equipped with a microprobe for energy dispersive X-ray spectroscopy. Fil: Brusilovsky, David Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Cabello, Federico. Universidad Nacional de Misiones; Argentina |
description |
Regardless of the simple accumulation of ions in the crystal insertion sites, nanomaterials offer a new storage mechanism of lithium ions (Li+), these storage mechanisms are formed in the interfaces and inside of the nanopores. Such kinds of storage mechanisms have no effect on the structure of the electrode material. Consequently, the charge-discharge process can continue for prolonged times. Note that singular novel nanomaterials can be developed in various shapes (rods, plates, tubes, particles, etc.) and dimensions (e.g. 0D, 1D, 2D, 3D). Each of these different possibilities of shapes and dimensions offers its specific advantages and disadvantages. Therefore, a large variety of morphological structures offering increased quantity and availability of storage sites for Li+ could be designed. In this work nanoparticles of lithiated oxide of transition metals have been synthesized and characterized. The synthesis of crystalline nanostructures generally requires a heat treatment, which involves controlled synthesis conditions. The synthesis of nanoparticles was based on the non-hydrolytic sol-gel method, considering acetates as chemical precursors. This approach presents an alternative to the usual sol-gel hydrolytic routes. Non hydrolytic methods in particular lead to improved control over the homogeneity and stoichiomtry level for multiple oxides components. The crystal structure of the nanocrystals was determined by X-ray diffraction (XRD). The morphology, the size and the composition of the particles were analyzed by using a scanning electron microscope equipped with a microprobe for energy dispersive X-ray spectroscopy. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87107 Brusilovsky, David Leopoldo; Cabello, Federico; Synthesis and characterization of lithiated nanostructures; Universidade Federal do Rio de Janeiro; Matéria; 23; 2; 7-2018; 1-4 1517-7076 1517-7076 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87107 |
identifier_str_mv |
Brusilovsky, David Leopoldo; Cabello, Federico; Synthesis and characterization of lithiated nanostructures; Universidade Federal do Rio de Janeiro; Matéria; 23; 2; 7-2018; 1-4 1517-7076 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/S1517-707620180002.0472 info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/48b8fg |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613113504071680 |
score |
13.070432 |