Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics
- Autores
- Zang, Xiaoling; Monge, Maria Eugenia; Gaul, David A.; Fernandez, Facundo M.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Flow injection-traveling-wave ion mobility-mass spectrometry (FITWIM-MS) was applied to the nontargeted metabolic profiling of serum extracts from 61 prostate-cancer (PCa) patients and 42 controls with an analysis speed of 6 min per sample, including a 3 min wash run. Comprehensive data mining of the mobility-mass domain was used to discriminate species with various charge states and filter matrix saltcluster ions. Specific criteria were developed to ensure correct grouping of adducts, insource fragments, and impurities in the data set. Endogenous metabolites were identified with high confidence using FI-TWIM-MS/MS and collision-cross-section (CCS) matching with chemical standards or CCS databases. PCa patient samples were distinguished from control samples with good accuracies (88.3-89.3%), sensitivities (88.5-90.2%), and specificity (88.1%) using supervised multivariate classification methods. Although largely underutilized in metabolomics studies, FI-TWIM-MS proved advantageous in terms of analysis speed, separation of ions in complex mixtures, improved signal-to-noise ratio, and reduction of spectral congestion. Results from this study showcase the potential of FITWIM-MS as a high-throughput metabolic-profiling tool for large-scale metabolomics studies.
Fil: Zang, Xiaoling. Georgia Institute of Techology; Estados Unidos
Fil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: Gaul, David A.. Georgia Institute of Techology; Estados Unidos
Fil: Fernandez, Facundo M.. Georgia Institute of Techology; Estados Unidos - Materia
-
MASS SPECTROMETRY
ION MOBILITY
FLOW INJECTION
PROSTATE CANCER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88678
Ver los metadatos del registro completo
id |
CONICETDig_14bfdb7adb8e07d17d75652fe6ecba28 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88678 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer MetabolomicsZang, XiaolingMonge, Maria EugeniaGaul, David A.Fernandez, Facundo M.MASS SPECTROMETRYION MOBILITYFLOW INJECTIONPROSTATE CANCERhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Flow injection-traveling-wave ion mobility-mass spectrometry (FITWIM-MS) was applied to the nontargeted metabolic profiling of serum extracts from 61 prostate-cancer (PCa) patients and 42 controls with an analysis speed of 6 min per sample, including a 3 min wash run. Comprehensive data mining of the mobility-mass domain was used to discriminate species with various charge states and filter matrix saltcluster ions. Specific criteria were developed to ensure correct grouping of adducts, insource fragments, and impurities in the data set. Endogenous metabolites were identified with high confidence using FI-TWIM-MS/MS and collision-cross-section (CCS) matching with chemical standards or CCS databases. PCa patient samples were distinguished from control samples with good accuracies (88.3-89.3%), sensitivities (88.5-90.2%), and specificity (88.1%) using supervised multivariate classification methods. Although largely underutilized in metabolomics studies, FI-TWIM-MS proved advantageous in terms of analysis speed, separation of ions in complex mixtures, improved signal-to-noise ratio, and reduction of spectral congestion. Results from this study showcase the potential of FITWIM-MS as a high-throughput metabolic-profiling tool for large-scale metabolomics studies.Fil: Zang, Xiaoling. Georgia Institute of Techology; Estados UnidosFil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Gaul, David A.. Georgia Institute of Techology; Estados UnidosFil: Fernandez, Facundo M.. Georgia Institute of Techology; Estados UnidosAmerican Chemical Society2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88678Zang, Xiaoling; Monge, Maria Eugenia; Gaul, David A.; Fernandez, Facundo M.; Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics; American Chemical Society; Analytical Chemistry; 90; 22; 11-2018; 13767-137740003-2700CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.analchem.8b04259info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.analchem.8b04259info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:20Zoai:ri.conicet.gov.ar:11336/88678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:20.805CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
title |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
spellingShingle |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics Zang, Xiaoling MASS SPECTROMETRY ION MOBILITY FLOW INJECTION PROSTATE CANCER |
title_short |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
title_full |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
title_fullStr |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
title_full_unstemmed |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
title_sort |
Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics |
dc.creator.none.fl_str_mv |
Zang, Xiaoling Monge, Maria Eugenia Gaul, David A. Fernandez, Facundo M. |
author |
Zang, Xiaoling |
author_facet |
Zang, Xiaoling Monge, Maria Eugenia Gaul, David A. Fernandez, Facundo M. |
author_role |
author |
author2 |
Monge, Maria Eugenia Gaul, David A. Fernandez, Facundo M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
MASS SPECTROMETRY ION MOBILITY FLOW INJECTION PROSTATE CANCER |
topic |
MASS SPECTROMETRY ION MOBILITY FLOW INJECTION PROSTATE CANCER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Flow injection-traveling-wave ion mobility-mass spectrometry (FITWIM-MS) was applied to the nontargeted metabolic profiling of serum extracts from 61 prostate-cancer (PCa) patients and 42 controls with an analysis speed of 6 min per sample, including a 3 min wash run. Comprehensive data mining of the mobility-mass domain was used to discriminate species with various charge states and filter matrix saltcluster ions. Specific criteria were developed to ensure correct grouping of adducts, insource fragments, and impurities in the data set. Endogenous metabolites were identified with high confidence using FI-TWIM-MS/MS and collision-cross-section (CCS) matching with chemical standards or CCS databases. PCa patient samples were distinguished from control samples with good accuracies (88.3-89.3%), sensitivities (88.5-90.2%), and specificity (88.1%) using supervised multivariate classification methods. Although largely underutilized in metabolomics studies, FI-TWIM-MS proved advantageous in terms of analysis speed, separation of ions in complex mixtures, improved signal-to-noise ratio, and reduction of spectral congestion. Results from this study showcase the potential of FITWIM-MS as a high-throughput metabolic-profiling tool for large-scale metabolomics studies. Fil: Zang, Xiaoling. Georgia Institute of Techology; Estados Unidos Fil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina Fil: Gaul, David A.. Georgia Institute of Techology; Estados Unidos Fil: Fernandez, Facundo M.. Georgia Institute of Techology; Estados Unidos |
description |
Flow injection-traveling-wave ion mobility-mass spectrometry (FITWIM-MS) was applied to the nontargeted metabolic profiling of serum extracts from 61 prostate-cancer (PCa) patients and 42 controls with an analysis speed of 6 min per sample, including a 3 min wash run. Comprehensive data mining of the mobility-mass domain was used to discriminate species with various charge states and filter matrix saltcluster ions. Specific criteria were developed to ensure correct grouping of adducts, insource fragments, and impurities in the data set. Endogenous metabolites were identified with high confidence using FI-TWIM-MS/MS and collision-cross-section (CCS) matching with chemical standards or CCS databases. PCa patient samples were distinguished from control samples with good accuracies (88.3-89.3%), sensitivities (88.5-90.2%), and specificity (88.1%) using supervised multivariate classification methods. Although largely underutilized in metabolomics studies, FI-TWIM-MS proved advantageous in terms of analysis speed, separation of ions in complex mixtures, improved signal-to-noise ratio, and reduction of spectral congestion. Results from this study showcase the potential of FITWIM-MS as a high-throughput metabolic-profiling tool for large-scale metabolomics studies. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88678 Zang, Xiaoling; Monge, Maria Eugenia; Gaul, David A.; Fernandez, Facundo M.; Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics; American Chemical Society; Analytical Chemistry; 90; 22; 11-2018; 13767-13774 0003-2700 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88678 |
identifier_str_mv |
Zang, Xiaoling; Monge, Maria Eugenia; Gaul, David A.; Fernandez, Facundo M.; Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics; American Chemical Society; Analytical Chemistry; 90; 22; 11-2018; 13767-13774 0003-2700 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.analchem.8b04259 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.analchem.8b04259 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613502322343936 |
score |
13.070432 |