Equation of state of sticky-hard-sphere fluids in the chemical-potential route

Autores
Rohrmann, Rene Daniel; Santos, Andrés
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route (μ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxter's model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the μ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the μ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Cienti­ficas y Tecnicas. Centro Cientifico Tecnologico San Juan. Instituto de Ciencias Astronomicas de la Tierra y del Espacio; Argentina
Fil: Santos, Andrés. Universidad de Extremadura. Departamento de Física; España
Materia
Statistical mechanics
Sticky hard spheres
Chemical potential route
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4917

id CONICETDig_148c5bd8676aa09a6d34335d9246a77e
oai_identifier_str oai:ri.conicet.gov.ar:11336/4917
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Equation of state of sticky-hard-sphere fluids in the chemical-potential routeRohrmann, Rene DanielSantos, AndrésStatistical mechanicsSticky hard spheresChemical potential routehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route (μ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxter's model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the μ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the μ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Cienti­ficas y Tecnicas. Centro Cientifico Tecnologico San Juan. Instituto de Ciencias Astronomicas de la Tierra y del Espacio; ArgentinaFil: Santos, Andrés. Universidad de Extremadura. Departamento de Física; EspañaAmerican Physical Society2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4917Rohrmann, Rene Daniel; Santos, Andrés; Equation of state of sticky-hard-sphere fluids in the chemical-potential route; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 89; 4; 4-2014; 042121-0421212470-0053enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.042121info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.042121info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1401.3549v2info:eu-repo/semantics/altIdentifier/pmid/24827207info:eu-repo/semantics/altIdentifier/arxiv/1401.3549v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:36Zoai:ri.conicet.gov.ar:11336/4917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:36.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Equation of state of sticky-hard-sphere fluids in the chemical-potential route
title Equation of state of sticky-hard-sphere fluids in the chemical-potential route
spellingShingle Equation of state of sticky-hard-sphere fluids in the chemical-potential route
Rohrmann, Rene Daniel
Statistical mechanics
Sticky hard spheres
Chemical potential route
title_short Equation of state of sticky-hard-sphere fluids in the chemical-potential route
title_full Equation of state of sticky-hard-sphere fluids in the chemical-potential route
title_fullStr Equation of state of sticky-hard-sphere fluids in the chemical-potential route
title_full_unstemmed Equation of state of sticky-hard-sphere fluids in the chemical-potential route
title_sort Equation of state of sticky-hard-sphere fluids in the chemical-potential route
dc.creator.none.fl_str_mv Rohrmann, Rene Daniel
Santos, Andrés
author Rohrmann, Rene Daniel
author_facet Rohrmann, Rene Daniel
Santos, Andrés
author_role author
author2 Santos, Andrés
author2_role author
dc.subject.none.fl_str_mv Statistical mechanics
Sticky hard spheres
Chemical potential route
topic Statistical mechanics
Sticky hard spheres
Chemical potential route
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route (μ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxter's model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the μ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the μ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Cienti­ficas y Tecnicas. Centro Cientifico Tecnologico San Juan. Instituto de Ciencias Astronomicas de la Tierra y del Espacio; Argentina
Fil: Santos, Andrés. Universidad de Extremadura. Departamento de Física; España
description The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route (μ route). As a consistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxter's model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the μ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the μ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4917
Rohrmann, Rene Daniel; Santos, Andrés; Equation of state of sticky-hard-sphere fluids in the chemical-potential route; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 89; 4; 4-2014; 042121-042121
2470-0053
url http://hdl.handle.net/11336/4917
identifier_str_mv Rohrmann, Rene Daniel; Santos, Andrés; Equation of state of sticky-hard-sphere fluids in the chemical-potential route; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 89; 4; 4-2014; 042121-042121
2470-0053
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.042121
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.89.042121
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1401.3549v2
info:eu-repo/semantics/altIdentifier/pmid/24827207
info:eu-repo/semantics/altIdentifier/arxiv/1401.3549v2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614278001197056
score 13.070432