Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry

Autores
Maratta Martínez, Sergio Ariel; Acosta, Mariano; Martinez, Luis Dante; Pacheco, Pablo Hugo; Gil, Raul Andres
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Arsenic determination in natural waters is an issue of current research. This article reports a novel hydride generation (HG) approach developed for As determination with electrothermal atomic absorption spectrometry (ETAAS) detection. The HG process was interfaced with ETAAS through hydride trapping onto a carbon nanotubes microcolumn. To this end a homemade gas-liquid separator was used, allowing arsine formation and its flow throughout the CNT microcolumn. The retention process involved thus a solid phase extraction from the gas phase to the solid support. Once arsine generation was completed, the elution was carried out with nitric acid directly onto the dosing hole of the graphite furnace. Outstanding sensitivity with detection limit of 1 ng L-1, quantification limit of 5 ng L-1 and the characteristic mass, 5.8 ± 0.4 pg could be achieved. A satisfactory correlation between concentration of As and absorbance (R = 0.9993) from the limit of quantification up to 500 ng L-1, with a relative standard deviation of 6.3% were obtained. A sensitive enhancement factor of 38 was reached when 2 mL of sample were processed and 50 μL of HNO3 were used as eluent. The system was successfully applied to the analysis of a standard reference material, QC LL2 metals in natural waters. In addition tap water analysis provided an As concentration of 0.29±0.03 μg L-1.
Fil: Maratta Martínez, Sergio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Acosta, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Pacheco, Pablo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Materia
ARSENIC
HYDRIDE TRAPPING
OXIDIZED MULTIWALL CARBON NANOTUBES
ELECTROTERMAL ATOMIC ABSORPTION SPECTROMETRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5792

id CONICETDig_147bfc6349a97caa3684fc9677498e78
oai_identifier_str oai:ri.conicet.gov.ar:11336/5792
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometryMaratta Martínez, Sergio ArielAcosta, MarianoMartinez, Luis DantePacheco, Pablo HugoGil, Raul AndresARSENICHYDRIDE TRAPPINGOXIDIZED MULTIWALL CARBON NANOTUBESELECTROTERMAL ATOMIC ABSORPTION SPECTROMETRYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Arsenic determination in natural waters is an issue of current research. This article reports a novel hydride generation (HG) approach developed for As determination with electrothermal atomic absorption spectrometry (ETAAS) detection. The HG process was interfaced with ETAAS through hydride trapping onto a carbon nanotubes microcolumn. To this end a homemade gas-liquid separator was used, allowing arsine formation and its flow throughout the CNT microcolumn. The retention process involved thus a solid phase extraction from the gas phase to the solid support. Once arsine generation was completed, the elution was carried out with nitric acid directly onto the dosing hole of the graphite furnace. Outstanding sensitivity with detection limit of 1 ng L-1, quantification limit of 5 ng L-1 and the characteristic mass, 5.8 ± 0.4 pg could be achieved. A satisfactory correlation between concentration of As and absorbance (R = 0.9993) from the limit of quantification up to 500 ng L-1, with a relative standard deviation of 6.3% were obtained. A sensitive enhancement factor of 38 was reached when 2 mL of sample were processed and 50 μL of HNO3 were used as eluent. The system was successfully applied to the analysis of a standard reference material, QC LL2 metals in natural waters. In addition tap water analysis provided an As concentration of 0.29±0.03 μg L-1.Fil: Maratta Martínez, Sergio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaFil: Acosta, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaFil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaFil: Pacheco, Pablo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaFil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaRoyal Society of Chemistry2013-03-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/pdfhttp://hdl.handle.net/11336/5792Maratta Martínez, Sergio Ariel; Acosta, Mariano; Martinez, Luis Dante; Pacheco, Pablo Hugo; Gil, Raul Andres; Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry; Royal Society of Chemistry; Journal of Analytical Atomic Spectrometry; 28; 6; 22-3-2013; 916-9220267-9477enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2013/ja/c3ja30385cinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C3JA30385Cinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:34:29Zoai:ri.conicet.gov.ar:11336/5792instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:34:29.686CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
title Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
spellingShingle Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
Maratta Martínez, Sergio Ariel
ARSENIC
HYDRIDE TRAPPING
OXIDIZED MULTIWALL CARBON NANOTUBES
ELECTROTERMAL ATOMIC ABSORPTION SPECTROMETRY
title_short Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
title_full Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
title_fullStr Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
title_full_unstemmed Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
title_sort Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry
dc.creator.none.fl_str_mv Maratta Martínez, Sergio Ariel
Acosta, Mariano
Martinez, Luis Dante
Pacheco, Pablo Hugo
Gil, Raul Andres
author Maratta Martínez, Sergio Ariel
author_facet Maratta Martínez, Sergio Ariel
Acosta, Mariano
Martinez, Luis Dante
Pacheco, Pablo Hugo
Gil, Raul Andres
author_role author
author2 Acosta, Mariano
Martinez, Luis Dante
Pacheco, Pablo Hugo
Gil, Raul Andres
author2_role author
author
author
author
dc.subject.none.fl_str_mv ARSENIC
HYDRIDE TRAPPING
OXIDIZED MULTIWALL CARBON NANOTUBES
ELECTROTERMAL ATOMIC ABSORPTION SPECTROMETRY
topic ARSENIC
HYDRIDE TRAPPING
OXIDIZED MULTIWALL CARBON NANOTUBES
ELECTROTERMAL ATOMIC ABSORPTION SPECTROMETRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Arsenic determination in natural waters is an issue of current research. This article reports a novel hydride generation (HG) approach developed for As determination with electrothermal atomic absorption spectrometry (ETAAS) detection. The HG process was interfaced with ETAAS through hydride trapping onto a carbon nanotubes microcolumn. To this end a homemade gas-liquid separator was used, allowing arsine formation and its flow throughout the CNT microcolumn. The retention process involved thus a solid phase extraction from the gas phase to the solid support. Once arsine generation was completed, the elution was carried out with nitric acid directly onto the dosing hole of the graphite furnace. Outstanding sensitivity with detection limit of 1 ng L-1, quantification limit of 5 ng L-1 and the characteristic mass, 5.8 ± 0.4 pg could be achieved. A satisfactory correlation between concentration of As and absorbance (R = 0.9993) from the limit of quantification up to 500 ng L-1, with a relative standard deviation of 6.3% were obtained. A sensitive enhancement factor of 38 was reached when 2 mL of sample were processed and 50 μL of HNO3 were used as eluent. The system was successfully applied to the analysis of a standard reference material, QC LL2 metals in natural waters. In addition tap water analysis provided an As concentration of 0.29±0.03 μg L-1.
Fil: Maratta Martínez, Sergio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Acosta, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Pacheco, Pablo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
description Arsenic determination in natural waters is an issue of current research. This article reports a novel hydride generation (HG) approach developed for As determination with electrothermal atomic absorption spectrometry (ETAAS) detection. The HG process was interfaced with ETAAS through hydride trapping onto a carbon nanotubes microcolumn. To this end a homemade gas-liquid separator was used, allowing arsine formation and its flow throughout the CNT microcolumn. The retention process involved thus a solid phase extraction from the gas phase to the solid support. Once arsine generation was completed, the elution was carried out with nitric acid directly onto the dosing hole of the graphite furnace. Outstanding sensitivity with detection limit of 1 ng L-1, quantification limit of 5 ng L-1 and the characteristic mass, 5.8 ± 0.4 pg could be achieved. A satisfactory correlation between concentration of As and absorbance (R = 0.9993) from the limit of quantification up to 500 ng L-1, with a relative standard deviation of 6.3% were obtained. A sensitive enhancement factor of 38 was reached when 2 mL of sample were processed and 50 μL of HNO3 were used as eluent. The system was successfully applied to the analysis of a standard reference material, QC LL2 metals in natural waters. In addition tap water analysis provided an As concentration of 0.29±0.03 μg L-1.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5792
Maratta Martínez, Sergio Ariel; Acosta, Mariano; Martinez, Luis Dante; Pacheco, Pablo Hugo; Gil, Raul Andres; Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry; Royal Society of Chemistry; Journal of Analytical Atomic Spectrometry; 28; 6; 22-3-2013; 916-922
0267-9477
url http://hdl.handle.net/11336/5792
identifier_str_mv Maratta Martínez, Sergio Ariel; Acosta, Mariano; Martinez, Luis Dante; Pacheco, Pablo Hugo; Gil, Raul Andres; Ultratrace arsenic determination through hydride trapping on oxidized multiwall carbon nanotubes coupled to electrothermal atomic absorption spectrometry; Royal Society of Chemistry; Journal of Analytical Atomic Spectrometry; 28; 6; 22-3-2013; 916-922
0267-9477
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2013/ja/c3ja30385c
info:eu-repo/semantics/altIdentifier/doi/10.1039/C3JA30385C
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847978028432359424
score 13.087074