Analytic solution for heat flow through a general harmonic network
- Autores
- Freitas, José Nahuel; Paz, Juan Pablo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.
Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Heat transport
Fourier Law
Quantum transport - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18244
Ver los metadatos del registro completo
| id |
CONICETDig_14779c292fe53e082d6fa45bc988ba64 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18244 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Analytic solution for heat flow through a general harmonic networkFreitas, José NahuelPaz, Juan PabloHeat transportFourier LawQuantum transporthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18244Freitas, José Nahuel; Paz, Juan Pablo; Analytic solution for heat flow through a general harmonic network; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 90; 4; 10-2014; 1-10; 0421281063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.042128info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/pdf/10.1103/PhysRevE.90.042128info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.2904info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:37:10Zoai:ri.conicet.gov.ar:11336/18244instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:37:10.85CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Analytic solution for heat flow through a general harmonic network |
| title |
Analytic solution for heat flow through a general harmonic network |
| spellingShingle |
Analytic solution for heat flow through a general harmonic network Freitas, José Nahuel Heat transport Fourier Law Quantum transport |
| title_short |
Analytic solution for heat flow through a general harmonic network |
| title_full |
Analytic solution for heat flow through a general harmonic network |
| title_fullStr |
Analytic solution for heat flow through a general harmonic network |
| title_full_unstemmed |
Analytic solution for heat flow through a general harmonic network |
| title_sort |
Analytic solution for heat flow through a general harmonic network |
| dc.creator.none.fl_str_mv |
Freitas, José Nahuel Paz, Juan Pablo |
| author |
Freitas, José Nahuel |
| author_facet |
Freitas, José Nahuel Paz, Juan Pablo |
| author_role |
author |
| author2 |
Paz, Juan Pablo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Heat transport Fourier Law Quantum transport |
| topic |
Heat transport Fourier Law Quantum transport |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before. Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
| description |
We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18244 Freitas, José Nahuel; Paz, Juan Pablo; Analytic solution for heat flow through a general harmonic network; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 90; 4; 10-2014; 1-10; 042128 1063-651X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18244 |
| identifier_str_mv |
Freitas, José Nahuel; Paz, Juan Pablo; Analytic solution for heat flow through a general harmonic network; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 90; 4; 10-2014; 1-10; 042128 1063-651X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.042128 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/pdf/10.1103/PhysRevE.90.042128 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.2904 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846082842373652480 |
| score |
13.22299 |