Analytic solution for heat flow through a general harmonic network

Autores
Freitas, José Nahuel; Paz, Juan Pablo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.
Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Heat transport
Fourier Law
Quantum transport
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18244

id CONICETDig_14779c292fe53e082d6fa45bc988ba64
oai_identifier_str oai:ri.conicet.gov.ar:11336/18244
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analytic solution for heat flow through a general harmonic networkFreitas, José NahuelPaz, Juan PabloHeat transportFourier LawQuantum transporthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18244Freitas, José Nahuel; Paz, Juan Pablo; Analytic solution for heat flow through a general harmonic network; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 90; 4; 10-2014; 1-10; 0421281063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.042128info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/pdf/10.1103/PhysRevE.90.042128info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.2904info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:37:10Zoai:ri.conicet.gov.ar:11336/18244instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:37:10.85CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analytic solution for heat flow through a general harmonic network
title Analytic solution for heat flow through a general harmonic network
spellingShingle Analytic solution for heat flow through a general harmonic network
Freitas, José Nahuel
Heat transport
Fourier Law
Quantum transport
title_short Analytic solution for heat flow through a general harmonic network
title_full Analytic solution for heat flow through a general harmonic network
title_fullStr Analytic solution for heat flow through a general harmonic network
title_full_unstemmed Analytic solution for heat flow through a general harmonic network
title_sort Analytic solution for heat flow through a general harmonic network
dc.creator.none.fl_str_mv Freitas, José Nahuel
Paz, Juan Pablo
author Freitas, José Nahuel
author_facet Freitas, José Nahuel
Paz, Juan Pablo
author_role author
author2 Paz, Juan Pablo
author2_role author
dc.subject.none.fl_str_mv Heat transport
Fourier Law
Quantum transport
topic Heat transport
Fourier Law
Quantum transport
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.
Fil: Freitas, José Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Paz, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18244
Freitas, José Nahuel; Paz, Juan Pablo; Analytic solution for heat flow through a general harmonic network; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 90; 4; 10-2014; 1-10; 042128
1063-651X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18244
identifier_str_mv Freitas, José Nahuel; Paz, Juan Pablo; Analytic solution for heat flow through a general harmonic network; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids And Related Interdisciplinary Topics; 90; 4; 10-2014; 1-10; 042128
1063-651X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.90.042128
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/pdf/10.1103/PhysRevE.90.042128
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.2904
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082842373652480
score 13.22299