Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis

Autores
Flesia, Ana Georgina
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Recently, biologists have shown fractal and oscillatory characteristics in animal behaviortime series. Aspects so different can be explained by a model with added components thatinclude deterministic cycles (ultradian and circadian rhythms), polynomial tendencies, and anunderlying nonlinear process with stationary increments. Such components can be extractedfrom the data using wavelet analysis by selecting the transformation appropriately. In this talk, we will discuss a five-step method that describes the data without making any parametric assumptions about trends in the frequency or amplitude of the components signals and is resilient to noise.1. Visual inspection by Continuous wavelet transform based on real Gaussian motherwavelet in the Cartesian time scale plane2. Visual inspection by Continuous wavelet transform based on complex Morlet motherwavelet in the Polar time scale plane.3. Modal frequency detection by Synchrosqueezed wavelet transform, a linear timescale analysis followed by a synchrosqueezing technique.4. Modal frequency corroboration by Empirical wavelet transform, a wavelet analysis in theFourier domain followed by frequency segmentation to extract the modal components.5- Quantification of coherence and phase difference between different series.
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
SMB 2021 Annual Meeting
Riverside
Estados Unidos
Society for Mathematical Biology
University of California
Materia
WAVELET
ULTRADIAN RHYTHMS
ANIMAL BEHAVIOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/193598

id CONICETDig_13e1ec96d79ea3ba578c43f2e3eb0e85
oai_identifier_str oai:ri.conicet.gov.ar:11336/193598
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysisFlesia, Ana GeorginaWAVELETULTRADIAN RHYTHMSANIMAL BEHAVIORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, biologists have shown fractal and oscillatory characteristics in animal behaviortime series. Aspects so different can be explained by a model with added components thatinclude deterministic cycles (ultradian and circadian rhythms), polynomial tendencies, and anunderlying nonlinear process with stationary increments. Such components can be extractedfrom the data using wavelet analysis by selecting the transformation appropriately. In this talk, we will discuss a five-step method that describes the data without making any parametric assumptions about trends in the frequency or amplitude of the components signals and is resilient to noise.1. Visual inspection by Continuous wavelet transform based on real Gaussian motherwavelet in the Cartesian time scale plane2. Visual inspection by Continuous wavelet transform based on complex Morlet motherwavelet in the Polar time scale plane.3. Modal frequency detection by Synchrosqueezed wavelet transform, a linear timescale analysis followed by a synchrosqueezing technique.4. Modal frequency corroboration by Empirical wavelet transform, a wavelet analysis in theFourier domain followed by frequency segmentation to extract the modal components.5- Quantification of coherence and phase difference between different series.Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSMB 2021 Annual MeetingRiversideEstados UnidosSociety for Mathematical BiologyUniversity of CaliforniaSociety for Mathematical Biology2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectEncuentroJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/193598Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis; SMB 2021 Annual Meeting; Riverside; Estados Unidos; 2021; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://2021.smb.org/NEUR/NEUR-CT09.html#author2Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:40Zoai:ri.conicet.gov.ar:11336/193598instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:40.615CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
title Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
spellingShingle Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
Flesia, Ana Georgina
WAVELET
ULTRADIAN RHYTHMS
ANIMAL BEHAVIOR
title_short Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
title_full Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
title_fullStr Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
title_full_unstemmed Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
title_sort Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
dc.creator.none.fl_str_mv Flesia, Ana Georgina
author Flesia, Ana Georgina
author_facet Flesia, Ana Georgina
author_role author
dc.subject.none.fl_str_mv WAVELET
ULTRADIAN RHYTHMS
ANIMAL BEHAVIOR
topic WAVELET
ULTRADIAN RHYTHMS
ANIMAL BEHAVIOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, biologists have shown fractal and oscillatory characteristics in animal behaviortime series. Aspects so different can be explained by a model with added components thatinclude deterministic cycles (ultradian and circadian rhythms), polynomial tendencies, and anunderlying nonlinear process with stationary increments. Such components can be extractedfrom the data using wavelet analysis by selecting the transformation appropriately. In this talk, we will discuss a five-step method that describes the data without making any parametric assumptions about trends in the frequency or amplitude of the components signals and is resilient to noise.1. Visual inspection by Continuous wavelet transform based on real Gaussian motherwavelet in the Cartesian time scale plane2. Visual inspection by Continuous wavelet transform based on complex Morlet motherwavelet in the Polar time scale plane.3. Modal frequency detection by Synchrosqueezed wavelet transform, a linear timescale analysis followed by a synchrosqueezing technique.4. Modal frequency corroboration by Empirical wavelet transform, a wavelet analysis in theFourier domain followed by frequency segmentation to extract the modal components.5- Quantification of coherence and phase difference between different series.
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
SMB 2021 Annual Meeting
Riverside
Estados Unidos
Society for Mathematical Biology
University of California
description Recently, biologists have shown fractal and oscillatory characteristics in animal behaviortime series. Aspects so different can be explained by a model with added components thatinclude deterministic cycles (ultradian and circadian rhythms), polynomial tendencies, and anunderlying nonlinear process with stationary increments. Such components can be extractedfrom the data using wavelet analysis by selecting the transformation appropriately. In this talk, we will discuss a five-step method that describes the data without making any parametric assumptions about trends in the frequency or amplitude of the components signals and is resilient to noise.1. Visual inspection by Continuous wavelet transform based on real Gaussian motherwavelet in the Cartesian time scale plane2. Visual inspection by Continuous wavelet transform based on complex Morlet motherwavelet in the Polar time scale plane.3. Modal frequency detection by Synchrosqueezed wavelet transform, a linear timescale analysis followed by a synchrosqueezing technique.4. Modal frequency corroboration by Empirical wavelet transform, a wavelet analysis in theFourier domain followed by frequency segmentation to extract the modal components.5- Quantification of coherence and phase difference between different series.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Encuentro
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/193598
Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis; SMB 2021 Annual Meeting; Riverside; Estados Unidos; 2021; 1-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/193598
identifier_str_mv Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis; SMB 2021 Annual Meeting; Riverside; Estados Unidos; 2021; 1-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://2021.smb.org/NEUR/NEUR-CT09.html#author2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Society for Mathematical Biology
publisher.none.fl_str_mv Society for Mathematical Biology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269813558214656
score 13.13397