Renormalization and Short Distance Singular Structure

Autores
Castagnino, Mario Alberto G. J.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The relation between renormalization and short distance singular divergencies in quantum field theory is studied. As a consequence a finite theory is presented. It is shown that these divergencies originate from the multiplication of distributions (and worse-defined mathematical objects). Some of them are eliminated when the multiplication is defined based on dimensional regularization, while others disappear when the states are considered as functionals over the observables space. Nonrenormalizable theories turn to be finite, but anyhow they are endowed with infinite arbitrary constants.
Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
Renormalization
Singular Structure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22378

id CONICETDig_13dc5a51dc739f3d89e8513b1cf0a9ad
oai_identifier_str oai:ri.conicet.gov.ar:11336/22378
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Renormalization and Short Distance Singular StructureCastagnino, Mario Alberto G. J.RenormalizationSingular Structurehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The relation between renormalization and short distance singular divergencies in quantum field theory is studied. As a consequence a finite theory is presented. It is shown that these divergencies originate from the multiplication of distributions (and worse-defined mathematical objects). Some of them are eliminated when the multiplication is defined based on dimensional regularization, while others disappear when the states are considered as functionals over the observables space. Nonrenormalizable theories turn to be finite, but anyhow they are endowed with infinite arbitrary constants.Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaSpringer/Plenum Publishers2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22378Castagnino, Mario Alberto G. J.; Renormalization and Short Distance Singular Structure; Springer/Plenum Publishers; International Journal of Theoretical Physics; 40; 12; 12-2001; 2143-21820020-7748CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1023/A:1012977902615info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1023/A:1012977902615info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/quant-ph/0008043info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:18Zoai:ri.conicet.gov.ar:11336/22378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:18.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Renormalization and Short Distance Singular Structure
title Renormalization and Short Distance Singular Structure
spellingShingle Renormalization and Short Distance Singular Structure
Castagnino, Mario Alberto G. J.
Renormalization
Singular Structure
title_short Renormalization and Short Distance Singular Structure
title_full Renormalization and Short Distance Singular Structure
title_fullStr Renormalization and Short Distance Singular Structure
title_full_unstemmed Renormalization and Short Distance Singular Structure
title_sort Renormalization and Short Distance Singular Structure
dc.creator.none.fl_str_mv Castagnino, Mario Alberto G. J.
author Castagnino, Mario Alberto G. J.
author_facet Castagnino, Mario Alberto G. J.
author_role author
dc.subject.none.fl_str_mv Renormalization
Singular Structure
topic Renormalization
Singular Structure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The relation between renormalization and short distance singular divergencies in quantum field theory is studied. As a consequence a finite theory is presented. It is shown that these divergencies originate from the multiplication of distributions (and worse-defined mathematical objects). Some of them are eliminated when the multiplication is defined based on dimensional regularization, while others disappear when the states are considered as functionals over the observables space. Nonrenormalizable theories turn to be finite, but anyhow they are endowed with infinite arbitrary constants.
Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description The relation between renormalization and short distance singular divergencies in quantum field theory is studied. As a consequence a finite theory is presented. It is shown that these divergencies originate from the multiplication of distributions (and worse-defined mathematical objects). Some of them are eliminated when the multiplication is defined based on dimensional regularization, while others disappear when the states are considered as functionals over the observables space. Nonrenormalizable theories turn to be finite, but anyhow they are endowed with infinite arbitrary constants.
publishDate 2001
dc.date.none.fl_str_mv 2001-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22378
Castagnino, Mario Alberto G. J.; Renormalization and Short Distance Singular Structure; Springer/Plenum Publishers; International Journal of Theoretical Physics; 40; 12; 12-2001; 2143-2182
0020-7748
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22378
identifier_str_mv Castagnino, Mario Alberto G. J.; Renormalization and Short Distance Singular Structure; Springer/Plenum Publishers; International Journal of Theoretical Physics; 40; 12; 12-2001; 2143-2182
0020-7748
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1023/A:1012977902615
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1023/A:1012977902615
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/quant-ph/0008043
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer/Plenum Publishers
publisher.none.fl_str_mv Springer/Plenum Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614227596148736
score 13.070432