Identifying duplicate functionality in textual use cases by aligning semantic actions

Autores
Rago, Alejandro Miguel; Marcos, Claudia Andrea; Diaz Pace, Jorge Andres
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Developing high-quality requirements specifications often demands a thoughtful analysis and an adequate level of expertise from analysts. Although requirements modeling techniques provide mechanisms for abstraction and clarity, fostering the reuse of shared functionality (e.g., via UML relationships for use cases), they are seldom employed in practice. A particular quality problem of textual requirements, such as use cases, is that of having duplicate pieces of functionality scattered across the specifications. Duplicate functionality can sometimes improve readability for end users, but hinders development-related tasks such as effort estimation, feature prioritization, and maintenance, among others. Unfortunately, inspecting textual requirements by hand in order to deal with redundant functionality can be an arduous, time-consuming, and error-prone activity for analysts. In this context, we introduce a novel approach called ReqAligner that aids analysts to spot signs of duplication in use cases in an automated fashion. To do so, ReqAligner combines several text processing techniques, such as a use case-aware classifier and a customized algorithm for sequence alignment. Essentially, the classifier converts the use cases into an abstract representation that consists of sequences of semantic actions, and then these sequences are compared pairwise in order to identify action matches, which become possible duplications. We have applied our technique to five real-world specifications, achieving promising results and identifying many sources of duplication in the use cases.
Fil: Rago, Alejandro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Marcos, Claudia Andrea. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
Machine Learning
Natural Language Processing
Requirements Engineering
Sequence Alignment
Use Case Modeling
Use Case Refactoring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58417

id CONICETDig_12869bd0b38a527081dd3cc66cb52d0b
oai_identifier_str oai:ri.conicet.gov.ar:11336/58417
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Identifying duplicate functionality in textual use cases by aligning semantic actionsRago, Alejandro MiguelMarcos, Claudia AndreaDiaz Pace, Jorge AndresMachine LearningNatural Language ProcessingRequirements EngineeringSequence AlignmentUse Case ModelingUse Case Refactoringhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Developing high-quality requirements specifications often demands a thoughtful analysis and an adequate level of expertise from analysts. Although requirements modeling techniques provide mechanisms for abstraction and clarity, fostering the reuse of shared functionality (e.g., via UML relationships for use cases), they are seldom employed in practice. A particular quality problem of textual requirements, such as use cases, is that of having duplicate pieces of functionality scattered across the specifications. Duplicate functionality can sometimes improve readability for end users, but hinders development-related tasks such as effort estimation, feature prioritization, and maintenance, among others. Unfortunately, inspecting textual requirements by hand in order to deal with redundant functionality can be an arduous, time-consuming, and error-prone activity for analysts. In this context, we introduce a novel approach called ReqAligner that aids analysts to spot signs of duplication in use cases in an automated fashion. To do so, ReqAligner combines several text processing techniques, such as a use case-aware classifier and a customized algorithm for sequence alignment. Essentially, the classifier converts the use cases into an abstract representation that consists of sequences of semantic actions, and then these sequences are compared pairwise in order to identify action matches, which become possible duplications. We have applied our technique to five real-world specifications, achieving promising results and identifying many sources of duplication in the use cases.Fil: Rago, Alejandro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Marcos, Claudia Andrea. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaSpringer Heidelberg2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58417Rago, Alejandro Miguel; Marcos, Claudia Andrea; Diaz Pace, Jorge Andres; Identifying duplicate functionality in textual use cases by aligning semantic actions; Springer Heidelberg; Software and Systems Modeling; 15; 2; 5-2016; 579-6031619-13661619-1374CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10270-014-0431-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10270-014-0431-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:33Zoai:ri.conicet.gov.ar:11336/58417instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:33.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Identifying duplicate functionality in textual use cases by aligning semantic actions
title Identifying duplicate functionality in textual use cases by aligning semantic actions
spellingShingle Identifying duplicate functionality in textual use cases by aligning semantic actions
Rago, Alejandro Miguel
Machine Learning
Natural Language Processing
Requirements Engineering
Sequence Alignment
Use Case Modeling
Use Case Refactoring
title_short Identifying duplicate functionality in textual use cases by aligning semantic actions
title_full Identifying duplicate functionality in textual use cases by aligning semantic actions
title_fullStr Identifying duplicate functionality in textual use cases by aligning semantic actions
title_full_unstemmed Identifying duplicate functionality in textual use cases by aligning semantic actions
title_sort Identifying duplicate functionality in textual use cases by aligning semantic actions
dc.creator.none.fl_str_mv Rago, Alejandro Miguel
Marcos, Claudia Andrea
Diaz Pace, Jorge Andres
author Rago, Alejandro Miguel
author_facet Rago, Alejandro Miguel
Marcos, Claudia Andrea
Diaz Pace, Jorge Andres
author_role author
author2 Marcos, Claudia Andrea
Diaz Pace, Jorge Andres
author2_role author
author
dc.subject.none.fl_str_mv Machine Learning
Natural Language Processing
Requirements Engineering
Sequence Alignment
Use Case Modeling
Use Case Refactoring
topic Machine Learning
Natural Language Processing
Requirements Engineering
Sequence Alignment
Use Case Modeling
Use Case Refactoring
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Developing high-quality requirements specifications often demands a thoughtful analysis and an adequate level of expertise from analysts. Although requirements modeling techniques provide mechanisms for abstraction and clarity, fostering the reuse of shared functionality (e.g., via UML relationships for use cases), they are seldom employed in practice. A particular quality problem of textual requirements, such as use cases, is that of having duplicate pieces of functionality scattered across the specifications. Duplicate functionality can sometimes improve readability for end users, but hinders development-related tasks such as effort estimation, feature prioritization, and maintenance, among others. Unfortunately, inspecting textual requirements by hand in order to deal with redundant functionality can be an arduous, time-consuming, and error-prone activity for analysts. In this context, we introduce a novel approach called ReqAligner that aids analysts to spot signs of duplication in use cases in an automated fashion. To do so, ReqAligner combines several text processing techniques, such as a use case-aware classifier and a customized algorithm for sequence alignment. Essentially, the classifier converts the use cases into an abstract representation that consists of sequences of semantic actions, and then these sequences are compared pairwise in order to identify action matches, which become possible duplications. We have applied our technique to five real-world specifications, achieving promising results and identifying many sources of duplication in the use cases.
Fil: Rago, Alejandro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Marcos, Claudia Andrea. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description Developing high-quality requirements specifications often demands a thoughtful analysis and an adequate level of expertise from analysts. Although requirements modeling techniques provide mechanisms for abstraction and clarity, fostering the reuse of shared functionality (e.g., via UML relationships for use cases), they are seldom employed in practice. A particular quality problem of textual requirements, such as use cases, is that of having duplicate pieces of functionality scattered across the specifications. Duplicate functionality can sometimes improve readability for end users, but hinders development-related tasks such as effort estimation, feature prioritization, and maintenance, among others. Unfortunately, inspecting textual requirements by hand in order to deal with redundant functionality can be an arduous, time-consuming, and error-prone activity for analysts. In this context, we introduce a novel approach called ReqAligner that aids analysts to spot signs of duplication in use cases in an automated fashion. To do so, ReqAligner combines several text processing techniques, such as a use case-aware classifier and a customized algorithm for sequence alignment. Essentially, the classifier converts the use cases into an abstract representation that consists of sequences of semantic actions, and then these sequences are compared pairwise in order to identify action matches, which become possible duplications. We have applied our technique to five real-world specifications, achieving promising results and identifying many sources of duplication in the use cases.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58417
Rago, Alejandro Miguel; Marcos, Claudia Andrea; Diaz Pace, Jorge Andres; Identifying duplicate functionality in textual use cases by aligning semantic actions; Springer Heidelberg; Software and Systems Modeling; 15; 2; 5-2016; 579-603
1619-1366
1619-1374
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58417
identifier_str_mv Rago, Alejandro Miguel; Marcos, Claudia Andrea; Diaz Pace, Jorge Andres; Identifying duplicate functionality in textual use cases by aligning semantic actions; Springer Heidelberg; Software and Systems Modeling; 15; 2; 5-2016; 579-603
1619-1366
1619-1374
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10270-014-0431-3
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10270-014-0431-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268929914830848
score 13.13397