Hydrogen diffusion and trapping in nanocrystalline tungsten

Autores
Piaggi, Pablo M.; Bringa, Eduardo Marcial; Pasianot, Roberto Cesar; Gordillo, Nuria; Panizo Laiz, M.; Del Río, J.; Gómez De Castro, C.; Gonzalez Arrabal, R.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.% < [H] < 10.0 at.%) is calculated. These data show that in all cases the hydrogen diffusion coefficient is lower for ncW than for coarse-grained samples. Trapping energies of grain boundaries are estimated and a broad distribution roughly centered at the vacancy trapping energy is found. Hydrogen diffusion results are interpreted within the trapping model by Kirchheim for nanocrystalline materials. The H-H interaction is evaluated and the possible formation of H2 is disregarded for the conditions in these simulations. Hydrogen segregation and trapping in grain boundaries for ncW is discussed, including extrapolations for micron-sized polycrystals.
Fil: Piaggi, Pablo M.. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Gordillo, Nuria. Universidad Politécnica de Madrid; España
Fil: Panizo Laiz, M.. Universidad Politécnica de Madrid; España
Fil: Del Río, J.. Universidad Complutense de Madrid; España
Fil: Gómez De Castro, C.. Universidad Complutense de Madrid; España
Fil: Gonzalez Arrabal, R.. Universidad Politécnica de Madrid; España
Materia
HYDROGEN DIFFUSION
NANOCRYSTALLINE TUNGSTEN
COMPUTER SIMULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85294

id CONICETDig_1280d4811753f6481890f3c106c3cc78
oai_identifier_str oai:ri.conicet.gov.ar:11336/85294
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hydrogen diffusion and trapping in nanocrystalline tungstenPiaggi, Pablo M.Bringa, Eduardo MarcialPasianot, Roberto CesarGordillo, NuriaPanizo Laiz, M.Del Río, J.Gómez De Castro, C.Gonzalez Arrabal, R.HYDROGEN DIFFUSIONNANOCRYSTALLINE TUNGSTENCOMPUTER SIMULATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.% < [H] < 10.0 at.%) is calculated. These data show that in all cases the hydrogen diffusion coefficient is lower for ncW than for coarse-grained samples. Trapping energies of grain boundaries are estimated and a broad distribution roughly centered at the vacancy trapping energy is found. Hydrogen diffusion results are interpreted within the trapping model by Kirchheim for nanocrystalline materials. The H-H interaction is evaluated and the possible formation of H2 is disregarded for the conditions in these simulations. Hydrogen segregation and trapping in grain boundaries for ncW is discussed, including extrapolations for micron-sized polycrystals.Fil: Piaggi, Pablo M.. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Gordillo, Nuria. Universidad Politécnica de Madrid; EspañaFil: Panizo Laiz, M.. Universidad Politécnica de Madrid; EspañaFil: Del Río, J.. Universidad Complutense de Madrid; EspañaFil: Gómez De Castro, C.. Universidad Complutense de Madrid; EspañaFil: Gonzalez Arrabal, R.. Universidad Politécnica de Madrid; EspañaElsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85294Piaggi, Pablo M.; Bringa, Eduardo Marcial; Pasianot, Roberto Cesar; Gordillo, Nuria; Panizo Laiz, M.; et al.; Hydrogen diffusion and trapping in nanocrystalline tungsten; Elsevier Science; Journal of Nuclear Materials; 458; 1-2015; 233-2390022-3115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnucmat.2014.12.069info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022311514010113info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:44Zoai:ri.conicet.gov.ar:11336/85294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:44.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hydrogen diffusion and trapping in nanocrystalline tungsten
title Hydrogen diffusion and trapping in nanocrystalline tungsten
spellingShingle Hydrogen diffusion and trapping in nanocrystalline tungsten
Piaggi, Pablo M.
HYDROGEN DIFFUSION
NANOCRYSTALLINE TUNGSTEN
COMPUTER SIMULATION
title_short Hydrogen diffusion and trapping in nanocrystalline tungsten
title_full Hydrogen diffusion and trapping in nanocrystalline tungsten
title_fullStr Hydrogen diffusion and trapping in nanocrystalline tungsten
title_full_unstemmed Hydrogen diffusion and trapping in nanocrystalline tungsten
title_sort Hydrogen diffusion and trapping in nanocrystalline tungsten
dc.creator.none.fl_str_mv Piaggi, Pablo M.
Bringa, Eduardo Marcial
Pasianot, Roberto Cesar
Gordillo, Nuria
Panizo Laiz, M.
Del Río, J.
Gómez De Castro, C.
Gonzalez Arrabal, R.
author Piaggi, Pablo M.
author_facet Piaggi, Pablo M.
Bringa, Eduardo Marcial
Pasianot, Roberto Cesar
Gordillo, Nuria
Panizo Laiz, M.
Del Río, J.
Gómez De Castro, C.
Gonzalez Arrabal, R.
author_role author
author2 Bringa, Eduardo Marcial
Pasianot, Roberto Cesar
Gordillo, Nuria
Panizo Laiz, M.
Del Río, J.
Gómez De Castro, C.
Gonzalez Arrabal, R.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv HYDROGEN DIFFUSION
NANOCRYSTALLINE TUNGSTEN
COMPUTER SIMULATION
topic HYDROGEN DIFFUSION
NANOCRYSTALLINE TUNGSTEN
COMPUTER SIMULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.% < [H] < 10.0 at.%) is calculated. These data show that in all cases the hydrogen diffusion coefficient is lower for ncW than for coarse-grained samples. Trapping energies of grain boundaries are estimated and a broad distribution roughly centered at the vacancy trapping energy is found. Hydrogen diffusion results are interpreted within the trapping model by Kirchheim for nanocrystalline materials. The H-H interaction is evaluated and the possible formation of H2 is disregarded for the conditions in these simulations. Hydrogen segregation and trapping in grain boundaries for ncW is discussed, including extrapolations for micron-sized polycrystals.
Fil: Piaggi, Pablo M.. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Gordillo, Nuria. Universidad Politécnica de Madrid; España
Fil: Panizo Laiz, M.. Universidad Politécnica de Madrid; España
Fil: Del Río, J.. Universidad Complutense de Madrid; España
Fil: Gómez De Castro, C.. Universidad Complutense de Madrid; España
Fil: Gonzalez Arrabal, R.. Universidad Politécnica de Madrid; España
description The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.% < [H] < 10.0 at.%) is calculated. These data show that in all cases the hydrogen diffusion coefficient is lower for ncW than for coarse-grained samples. Trapping energies of grain boundaries are estimated and a broad distribution roughly centered at the vacancy trapping energy is found. Hydrogen diffusion results are interpreted within the trapping model by Kirchheim for nanocrystalline materials. The H-H interaction is evaluated and the possible formation of H2 is disregarded for the conditions in these simulations. Hydrogen segregation and trapping in grain boundaries for ncW is discussed, including extrapolations for micron-sized polycrystals.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85294
Piaggi, Pablo M.; Bringa, Eduardo Marcial; Pasianot, Roberto Cesar; Gordillo, Nuria; Panizo Laiz, M.; et al.; Hydrogen diffusion and trapping in nanocrystalline tungsten; Elsevier Science; Journal of Nuclear Materials; 458; 1-2015; 233-239
0022-3115
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85294
identifier_str_mv Piaggi, Pablo M.; Bringa, Eduardo Marcial; Pasianot, Roberto Cesar; Gordillo, Nuria; Panizo Laiz, M.; et al.; Hydrogen diffusion and trapping in nanocrystalline tungsten; Elsevier Science; Journal of Nuclear Materials; 458; 1-2015; 233-239
0022-3115
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnucmat.2014.12.069
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022311514010113
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613979132919808
score 13.070432