Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila

Autores
Nusblat, Alejandro David; Muñoz, Luciana; Valcarce, German A.; Nudel, Berta Clara
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Live Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena’s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions.b5 in these reactions.
Fil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina
Fil: Muñoz, Luciana. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valcarce, German A.. No especifíca;
Fil: Nudel, Berta Clara. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
C22(23)-cholesterol desaturase, C7(8)-cholesterol desaturase
inhibitors
induction by sterols
reconstitution in vesicles
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241794

id CONICETDig_1250e8ecd76276e3e4cff78340381123
oai_identifier_str oai:ri.conicet.gov.ar:11336/241794
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophilaNusblat, Alejandro DavidMuñoz, LucianaValcarce, German A.Nudel, Berta ClaraC22(23)-cholesterol desaturase, C7(8)-cholesterol desaturaseinhibitorsinduction by sterolsreconstitution in vesicleshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Live Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena’s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions.b5 in these reactions.Fil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; ArgentinaFil: Muñoz, Luciana. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valcarce, German A.. No especifíca;Fil: Nudel, Berta Clara. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley Blackwell Publishing, Inc2005-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241794Nusblat, Alejandro David; Muñoz, Luciana; Valcarce, German A.; Nudel, Berta Clara; Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila; Wiley Blackwell Publishing, Inc; Journal of Eukaryotic Microbiology; 52; 1; 1-2005; 61-671066-5234CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1550-7408.2005.3279rr.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1550-7408.2005.3279rr.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:17Zoai:ri.conicet.gov.ar:11336/241794instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:17.606CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
title Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
spellingShingle Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
Nusblat, Alejandro David
C22(23)-cholesterol desaturase, C7(8)-cholesterol desaturase
inhibitors
induction by sterols
reconstitution in vesicles
title_short Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
title_full Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
title_fullStr Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
title_full_unstemmed Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
title_sort Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila
dc.creator.none.fl_str_mv Nusblat, Alejandro David
Muñoz, Luciana
Valcarce, German A.
Nudel, Berta Clara
author Nusblat, Alejandro David
author_facet Nusblat, Alejandro David
Muñoz, Luciana
Valcarce, German A.
Nudel, Berta Clara
author_role author
author2 Muñoz, Luciana
Valcarce, German A.
Nudel, Berta Clara
author2_role author
author
author
dc.subject.none.fl_str_mv C22(23)-cholesterol desaturase, C7(8)-cholesterol desaturase
inhibitors
induction by sterols
reconstitution in vesicles
topic C22(23)-cholesterol desaturase, C7(8)-cholesterol desaturase
inhibitors
induction by sterols
reconstitution in vesicles
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Live Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena’s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions.b5 in these reactions.
Fil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina
Fil: Muñoz, Luciana. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Valcarce, German A.. No especifíca;
Fil: Nudel, Berta Clara. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Live Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena thermophila transforms exogenous cholesterol into 7,22-bis, dehydrocholesterol (DHC) by desaturation at positions C7(8) and C22(23) of the cholesterol moiety. In this first report on expression, isolation, characterization, and reconstitution of Tetrahymena’s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. s cholesterol desaturases in cell-free extracts, we describe conditions for increasing the expression of both desaturases based on the addition of specific sterols to the culture medium. Reactions performed in vitro, with isolated microsomes, yield only the monounsaturated derivatives, 7-DHC and/or 22-DHC. However, selectivity towards one product can be improved with the addition of specific compounds: b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b-mercaptoethanol inhibited C22(23) desaturase activity completely, while ethanol selectively increased this activity. Detergent- solubilized microsomes showed no desaturase activity, but partial restoration could be achieved with addition of dilauroylphosphatidylcholine liposomes (25%). Both cholesterol desaturases require molecular oxygen and cytochrome b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions. b5. NADH Q1 or NADPH can serve as reduced cofactors, albeit with different efficiency, delivered by reductases present in the microsomal fraction. Azide and cyanide, but not azole compounds, inhibited these desaturases, suggesting a key role for cytochrome b5 in these reactions.b5 in these reactions.
publishDate 2005
dc.date.none.fl_str_mv 2005-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241794
Nusblat, Alejandro David; Muñoz, Luciana; Valcarce, German A.; Nudel, Berta Clara; Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila; Wiley Blackwell Publishing, Inc; Journal of Eukaryotic Microbiology; 52; 1; 1-2005; 61-67
1066-5234
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241794
identifier_str_mv Nusblat, Alejandro David; Muñoz, Luciana; Valcarce, German A.; Nudel, Berta Clara; Characterisation and properties of cholesterol desaturases from the ciliate Tetrahymena thermophila; Wiley Blackwell Publishing, Inc; Journal of Eukaryotic Microbiology; 52; 1; 1-2005; 61-67
1066-5234
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1550-7408.2005.3279rr.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1550-7408.2005.3279rr.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613060375871488
score 13.070432