New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
- Autores
- Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; Kurth, W. S.; Berthelier, J. J.; Grard, R.; Hamelin, M.; Schwingenschuh, K.; Simões, F.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick.
Fil: Béghin, C.. Universite d’Orleans; Francia
Fil: Canu, P.. Universite de Versailles-Saint Quentin en Yvelines; Francia
Fil: Karkoschka, E.. University of Arizona; Estados Unidos
Fil: Sotin, C.. California Institute Of Technology; Estados Unidos
Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kurth, W. S.. University of Iowa; Estados Unidos
Fil: Berthelier, J. J.. Institut Pierre Simon Laplace; Francia
Fil: Grard, R.. European Space Agency; Países Bajos
Fil: Hamelin, M.. Institut Pierre Simon Laplace; Francia
Fil: Schwingenschuh, K.. Austrian Academy of Sciences; Austria
Fil: Simões, F.. Institut Pierre Simon Laplace; Francia - Materia
-
Satellites Atmospheres
Saturn Magnetosphere
Titan And Interiors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20677
Ver los metadatos del registro completo
id |
CONICETDig_11a5839a4712139391c860ec4d5965e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20677 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini dataBéghin, C.Canu, P.Karkoschka, E.Sotin, C.Bertucci, CesarKurth, W. S.Berthelier, J. J.Grard, R.Hamelin, M.Schwingenschuh, K.Simões, F.Satellites AtmospheresSaturn MagnetosphereTitan And Interiorshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick.Fil: Béghin, C.. Universite d’Orleans; FranciaFil: Canu, P.. Universite de Versailles-Saint Quentin en Yvelines; FranciaFil: Karkoschka, E.. University of Arizona; Estados UnidosFil: Sotin, C.. California Institute Of Technology; Estados UnidosFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Berthelier, J. J.. Institut Pierre Simon Laplace; FranciaFil: Grard, R.. European Space Agency; Países BajosFil: Hamelin, M.. Institut Pierre Simon Laplace; FranciaFil: Schwingenschuh, K.. Austrian Academy of Sciences; AustriaFil: Simões, F.. Institut Pierre Simon Laplace; FranciaPergamon-Elsevier Science Ltd2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20677Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; et al.; New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data; Pergamon-Elsevier Science Ltd; Planetary and Space Science; 57; 14-15; 12-2009; 1872-18880032-0633CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0032063309001020info:eu-repo/semantics/altIdentifier/doi/10.1016/j.pss.2009.04.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:31Zoai:ri.conicet.gov.ar:11336/20677instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:31.509CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
title |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
spellingShingle |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data Béghin, C. Satellites Atmospheres Saturn Magnetosphere Titan And Interiors |
title_short |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
title_full |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
title_fullStr |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
title_full_unstemmed |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
title_sort |
New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data |
dc.creator.none.fl_str_mv |
Béghin, C. Canu, P. Karkoschka, E. Sotin, C. Bertucci, Cesar Kurth, W. S. Berthelier, J. J. Grard, R. Hamelin, M. Schwingenschuh, K. Simões, F. |
author |
Béghin, C. |
author_facet |
Béghin, C. Canu, P. Karkoschka, E. Sotin, C. Bertucci, Cesar Kurth, W. S. Berthelier, J. J. Grard, R. Hamelin, M. Schwingenschuh, K. Simões, F. |
author_role |
author |
author2 |
Canu, P. Karkoschka, E. Sotin, C. Bertucci, Cesar Kurth, W. S. Berthelier, J. J. Grard, R. Hamelin, M. Schwingenschuh, K. Simões, F. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Satellites Atmospheres Saturn Magnetosphere Titan And Interiors |
topic |
Satellites Atmospheres Saturn Magnetosphere Titan And Interiors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick. Fil: Béghin, C.. Universite d’Orleans; Francia Fil: Canu, P.. Universite de Versailles-Saint Quentin en Yvelines; Francia Fil: Karkoschka, E.. University of Arizona; Estados Unidos Fil: Sotin, C.. California Institute Of Technology; Estados Unidos Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Kurth, W. S.. University of Iowa; Estados Unidos Fil: Berthelier, J. J.. Institut Pierre Simon Laplace; Francia Fil: Grard, R.. European Space Agency; Países Bajos Fil: Hamelin, M.. Institut Pierre Simon Laplace; Francia Fil: Schwingenschuh, K.. Austrian Academy of Sciences; Austria Fil: Simões, F.. Institut Pierre Simon Laplace; Francia |
description |
After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20677 Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; et al.; New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data; Pergamon-Elsevier Science Ltd; Planetary and Space Science; 57; 14-15; 12-2009; 1872-1888 0032-0633 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20677 |
identifier_str_mv |
Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; et al.; New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data; Pergamon-Elsevier Science Ltd; Planetary and Space Science; 57; 14-15; 12-2009; 1872-1888 0032-0633 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0032063309001020 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.pss.2009.04.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614350786002944 |
score |
13.070432 |