New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data

Autores
Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; Kurth, W. S.; Berthelier, J. J.; Grard, R.; Hamelin, M.; Schwingenschuh, K.; Simões, F.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick.
Fil: Béghin, C.. Universite d’Orleans; Francia
Fil: Canu, P.. Universite de Versailles-Saint Quentin en Yvelines; Francia
Fil: Karkoschka, E.. University of Arizona; Estados Unidos
Fil: Sotin, C.. California Institute Of Technology; Estados Unidos
Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kurth, W. S.. University of Iowa; Estados Unidos
Fil: Berthelier, J. J.. Institut Pierre Simon Laplace; Francia
Fil: Grard, R.. European Space Agency; Países Bajos
Fil: Hamelin, M.. Institut Pierre Simon Laplace; Francia
Fil: Schwingenschuh, K.. Austrian Academy of Sciences; Austria
Fil: Simões, F.. Institut Pierre Simon Laplace; Francia
Materia
Satellites Atmospheres
Saturn Magnetosphere
Titan And Interiors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20677

id CONICETDig_11a5839a4712139391c860ec4d5965e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/20677
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini dataBéghin, C.Canu, P.Karkoschka, E.Sotin, C.Bertucci, CesarKurth, W. S.Berthelier, J. J.Grard, R.Hamelin, M.Schwingenschuh, K.Simões, F.Satellites AtmospheresSaturn MagnetosphereTitan And Interiorshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick.Fil: Béghin, C.. Universite d’Orleans; FranciaFil: Canu, P.. Universite de Versailles-Saint Quentin en Yvelines; FranciaFil: Karkoschka, E.. University of Arizona; Estados UnidosFil: Sotin, C.. California Institute Of Technology; Estados UnidosFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kurth, W. S.. University of Iowa; Estados UnidosFil: Berthelier, J. J.. Institut Pierre Simon Laplace; FranciaFil: Grard, R.. European Space Agency; Países BajosFil: Hamelin, M.. Institut Pierre Simon Laplace; FranciaFil: Schwingenschuh, K.. Austrian Academy of Sciences; AustriaFil: Simões, F.. Institut Pierre Simon Laplace; FranciaPergamon-Elsevier Science Ltd2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20677Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; et al.; New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data; Pergamon-Elsevier Science Ltd; Planetary and Space Science; 57; 14-15; 12-2009; 1872-18880032-0633CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0032063309001020info:eu-repo/semantics/altIdentifier/doi/10.1016/j.pss.2009.04.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:31Zoai:ri.conicet.gov.ar:11336/20677instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:31.509CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
title New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
spellingShingle New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
Béghin, C.
Satellites Atmospheres
Saturn Magnetosphere
Titan And Interiors
title_short New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
title_full New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
title_fullStr New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
title_full_unstemmed New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
title_sort New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data
dc.creator.none.fl_str_mv Béghin, C.
Canu, P.
Karkoschka, E.
Sotin, C.
Bertucci, Cesar
Kurth, W. S.
Berthelier, J. J.
Grard, R.
Hamelin, M.
Schwingenschuh, K.
Simões, F.
author Béghin, C.
author_facet Béghin, C.
Canu, P.
Karkoschka, E.
Sotin, C.
Bertucci, Cesar
Kurth, W. S.
Berthelier, J. J.
Grard, R.
Hamelin, M.
Schwingenschuh, K.
Simões, F.
author_role author
author2 Canu, P.
Karkoschka, E.
Sotin, C.
Bertucci, Cesar
Kurth, W. S.
Berthelier, J. J.
Grard, R.
Hamelin, M.
Schwingenschuh, K.
Simões, F.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Satellites Atmospheres
Saturn Magnetosphere
Titan And Interiors
topic Satellites Atmospheres
Saturn Magnetosphere
Titan And Interiors
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick.
Fil: Béghin, C.. Universite d’Orleans; Francia
Fil: Canu, P.. Universite de Versailles-Saint Quentin en Yvelines; Francia
Fil: Karkoschka, E.. University of Arizona; Estados Unidos
Fil: Sotin, C.. California Institute Of Technology; Estados Unidos
Fil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Kurth, W. S.. University of Iowa; Estados Unidos
Fil: Berthelier, J. J.. Institut Pierre Simon Laplace; Francia
Fil: Grard, R.. European Space Agency; Países Bajos
Fil: Hamelin, M.. Institut Pierre Simon Laplace; Francia
Fil: Schwingenschuh, K.. Austrian Academy of Sciences; Austria
Fil: Simões, F.. Institut Pierre Simon Laplace; Francia
description After a preliminary analysis of the low-frequency data collected with the electric antenna of the Permittivity, Wave and Altimetry (PWA) experiment onboard the Huygens Probe that landed on Titan on 14 January, 2005, it was anticipated in a previous article [Béghin et al., 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 191, 251–266] that the Extremely Low-Frequency (ELF) signal at around 36 Hz observed throughout the descent, might have been generated in the upper ionosphere of Titan, driven by a plasma instability mechanism associated with the co-rotating Kronian plasma flow. The involved process was proposed as the most likely source of a Schumann resonance in the moon's atmospheric cavity, the second eigenmode of which is actually found by models to occur at around 36 Hz. In this paper, we present a thorough analysis of this signal based upon the Huygens Probe attitude data deduced from the Descent Imager Spectral Radiometer (DISR), and relevant measurements obtained from the Radio Plasma Wave Science (RPWS) experiment and from the magnetometer (MAG) onboard Cassini orbiter during flybys of Titan. We have derived several coherent characteristics of the signal which confirm the validity of the mechanism initially proposed and provide new and significant insights about such a unique type of Schumann resonance in the solar system. Indeed, the 36 Hz signal contains all the characteristics of a polarized wave, with the measured electric field horizontal component modulated by the antenna rotation, and an altitude profile in agreement with a Longitudinal Section Electric (LSE) eigenmode of the atmospheric cavity. In contrast to Earth's conditions where the conventional Transverse Magnetic mode is considered, the LSE mode appears to be the only one complying with the observations and the unexpected peculiar conditions on Titan. These conditions are essentially the lack of any lightning activity that can be ascertained from Cassini observations, the presence of an ionized layer centered around 62 km altitude that was discovered by the PWA instrumentation, and the existence of a subsurface conducting boundary which is mandatory for trapping ELF waves. A simple theoretical model derived from our analysis places tentatively consequential constraints on the conductivity profile in the lower ionosphere. It is also consistent with the presence of a conductive water ocean below an icy crust some tens of kilometers thick.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20677
Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; et al.; New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data; Pergamon-Elsevier Science Ltd; Planetary and Space Science; 57; 14-15; 12-2009; 1872-1888
0032-0633
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20677
identifier_str_mv Béghin, C.; Canu, P.; Karkoschka, E.; Sotin, C.; Bertucci, Cesar; et al.; New insights on Titan's plasma-driven Schumann resonance inferred from Huygens and Cassini data; Pergamon-Elsevier Science Ltd; Planetary and Space Science; 57; 14-15; 12-2009; 1872-1888
0032-0633
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0032063309001020
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.pss.2009.04.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614350786002944
score 13.070432