Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation
- Autores
- Martinez, Maximiliano; Molina, Marcelo Gustavo; Mercado, Pedro Enrique
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a methodology to determine both the technology of Energy Storage System (ESS) and its optimal sizing in order to provide secondary frequency control (SFC) to power systems with high penetration of wind generation. The objective is to determine the optimal investment in an ESS,considering the impact of the energy storage device on the costs of the electrical system and on the quality of frequency. The methodology allows calculating probabilistically the variable investment and operation costs of the ESS, considering the uncertainties associated with the stochastic behavior of the wind generation, conventional generation availability, network topology and the demand for energy. To this aim, a hybrid optimization using a meta-heuristic algorithm called Mean-Variance Mapping Optimization (MVMO) is utilized, whose control variable is the size vector (maximum power and energy capacity of the storage device), and an optimization model to compute the optimal power flow (OPF).
Fil: Martinez, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Molina, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Mercado, Pedro Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina - Materia
-
Energy Storage
Optimization
Power Quality
Wind Power Generation
Secondary Frequency Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42178
Ver los metadatos del registro completo
id |
CONICETDig_1152a1075ed835eef09c17355592966b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42178 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind GenerationMartinez, MaximilianoMolina, Marcelo GustavoMercado, Pedro EnriqueEnergy StorageOptimizationPower QualityWind Power GenerationSecondary Frequency Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper proposes a methodology to determine both the technology of Energy Storage System (ESS) and its optimal sizing in order to provide secondary frequency control (SFC) to power systems with high penetration of wind generation. The objective is to determine the optimal investment in an ESS,considering the impact of the energy storage device on the costs of the electrical system and on the quality of frequency. The methodology allows calculating probabilistically the variable investment and operation costs of the ESS, considering the uncertainties associated with the stochastic behavior of the wind generation, conventional generation availability, network topology and the demand for energy. To this aim, a hybrid optimization using a meta-heuristic algorithm called Mean-Variance Mapping Optimization (MVMO) is utilized, whose control variable is the size vector (maximum power and energy capacity of the storage device), and an optimization model to compute the optimal power flow (OPF).Fil: Martinez, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Molina, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Mercado, Pedro Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaInstitute of Electrical and Electronics Engineers2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42178Martinez, Maximiliano; Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 9; 12-2015; 2983-29901548-0992CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7350049info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7350049/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:33Zoai:ri.conicet.gov.ar:11336/42178instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:34.1CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
title |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
spellingShingle |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation Martinez, Maximiliano Energy Storage Optimization Power Quality Wind Power Generation Secondary Frequency Control |
title_short |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
title_full |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
title_fullStr |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
title_full_unstemmed |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
title_sort |
Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation |
dc.creator.none.fl_str_mv |
Martinez, Maximiliano Molina, Marcelo Gustavo Mercado, Pedro Enrique |
author |
Martinez, Maximiliano |
author_facet |
Martinez, Maximiliano Molina, Marcelo Gustavo Mercado, Pedro Enrique |
author_role |
author |
author2 |
Molina, Marcelo Gustavo Mercado, Pedro Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Energy Storage Optimization Power Quality Wind Power Generation Secondary Frequency Control |
topic |
Energy Storage Optimization Power Quality Wind Power Generation Secondary Frequency Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper proposes a methodology to determine both the technology of Energy Storage System (ESS) and its optimal sizing in order to provide secondary frequency control (SFC) to power systems with high penetration of wind generation. The objective is to determine the optimal investment in an ESS,considering the impact of the energy storage device on the costs of the electrical system and on the quality of frequency. The methodology allows calculating probabilistically the variable investment and operation costs of the ESS, considering the uncertainties associated with the stochastic behavior of the wind generation, conventional generation availability, network topology and the demand for energy. To this aim, a hybrid optimization using a meta-heuristic algorithm called Mean-Variance Mapping Optimization (MVMO) is utilized, whose control variable is the size vector (maximum power and energy capacity of the storage device), and an optimization model to compute the optimal power flow (OPF). Fil: Martinez, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Molina, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Mercado, Pedro Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina |
description |
This paper proposes a methodology to determine both the technology of Energy Storage System (ESS) and its optimal sizing in order to provide secondary frequency control (SFC) to power systems with high penetration of wind generation. The objective is to determine the optimal investment in an ESS,considering the impact of the energy storage device on the costs of the electrical system and on the quality of frequency. The methodology allows calculating probabilistically the variable investment and operation costs of the ESS, considering the uncertainties associated with the stochastic behavior of the wind generation, conventional generation availability, network topology and the demand for energy. To this aim, a hybrid optimization using a meta-heuristic algorithm called Mean-Variance Mapping Optimization (MVMO) is utilized, whose control variable is the size vector (maximum power and energy capacity of the storage device), and an optimization model to compute the optimal power flow (OPF). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42178 Martinez, Maximiliano; Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 9; 12-2015; 2983-2990 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42178 |
identifier_str_mv |
Martinez, Maximiliano; Molina, Marcelo Gustavo; Mercado, Pedro Enrique; Optimal Storage Technology Selection and Sizing for Providing Reserve to Power Systems with High Penetration of Wind Generation; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 9; 12-2015; 2983-2990 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7350049 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7350049/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613108973174784 |
score |
13.070432 |