Ultrafast inside‐out NMR assessment of rechargeable cells
- Autores
- Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; Dahn, Jeff; Jerschow, Alexej
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware.
Fil: Pigliapochi, Roberta. University of New York; Estados Unidos
Fil: Benders, Stefan. University of New York; Estados Unidos
Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Glazier, Stephen L.. Dalhousie University Halifax; Canadá
Fil: Lee, Elizabeth. Dalhousie University Halifax; Canadá
Fil: Dahn, Jeff. Dalhousie University Halifax; Canadá
Fil: Jerschow, Alexej. University of New York; Estados Unidos - Materia
-
NMR
BATTERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143540
Ver los metadatos del registro completo
id |
CONICETDig_112e8c46077a57787a6911c33744d267 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143540 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ultrafast inside‐out NMR assessment of rechargeable cellsPigliapochi, RobertaBenders, StefanSilletta, Emilia VictoriaGlazier, Stephen L.Lee, ElizabethDahn, JeffJerschow, AlexejNMRBATTERIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware.Fil: Pigliapochi, Roberta. University of New York; Estados UnidosFil: Benders, Stefan. University of New York; Estados UnidosFil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Glazier, Stephen L.. Dalhousie University Halifax; CanadáFil: Lee, Elizabeth. Dalhousie University Halifax; CanadáFil: Dahn, Jeff. Dalhousie University Halifax; CanadáFil: Jerschow, Alexej. University of New York; Estados UnidosWiley2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143540Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; et al.; Ultrafast inside‐out NMR assessment of rechargeable cells; Wiley; Batteries & Supercaps; 4; 2; 10-2020; 322-3262566-62232566-6223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/batt.202000200info:eu-repo/semantics/altIdentifier/doi/10.1002/batt.202000200info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:33Zoai:ri.conicet.gov.ar:11336/143540instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:33.31CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ultrafast inside‐out NMR assessment of rechargeable cells |
title |
Ultrafast inside‐out NMR assessment of rechargeable cells |
spellingShingle |
Ultrafast inside‐out NMR assessment of rechargeable cells Pigliapochi, Roberta NMR BATTERIES |
title_short |
Ultrafast inside‐out NMR assessment of rechargeable cells |
title_full |
Ultrafast inside‐out NMR assessment of rechargeable cells |
title_fullStr |
Ultrafast inside‐out NMR assessment of rechargeable cells |
title_full_unstemmed |
Ultrafast inside‐out NMR assessment of rechargeable cells |
title_sort |
Ultrafast inside‐out NMR assessment of rechargeable cells |
dc.creator.none.fl_str_mv |
Pigliapochi, Roberta Benders, Stefan Silletta, Emilia Victoria Glazier, Stephen L. Lee, Elizabeth Dahn, Jeff Jerschow, Alexej |
author |
Pigliapochi, Roberta |
author_facet |
Pigliapochi, Roberta Benders, Stefan Silletta, Emilia Victoria Glazier, Stephen L. Lee, Elizabeth Dahn, Jeff Jerschow, Alexej |
author_role |
author |
author2 |
Benders, Stefan Silletta, Emilia Victoria Glazier, Stephen L. Lee, Elizabeth Dahn, Jeff Jerschow, Alexej |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
NMR BATTERIES |
topic |
NMR BATTERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware. Fil: Pigliapochi, Roberta. University of New York; Estados Unidos Fil: Benders, Stefan. University of New York; Estados Unidos Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Glazier, Stephen L.. Dalhousie University Halifax; Canadá Fil: Lee, Elizabeth. Dalhousie University Halifax; Canadá Fil: Dahn, Jeff. Dalhousie University Halifax; Canadá Fil: Jerschow, Alexej. University of New York; Estados Unidos |
description |
Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143540 Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; et al.; Ultrafast inside‐out NMR assessment of rechargeable cells; Wiley; Batteries & Supercaps; 4; 2; 10-2020; 322-326 2566-6223 2566-6223 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143540 |
identifier_str_mv |
Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; et al.; Ultrafast inside‐out NMR assessment of rechargeable cells; Wiley; Batteries & Supercaps; 4; 2; 10-2020; 322-326 2566-6223 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/batt.202000200 info:eu-repo/semantics/altIdentifier/doi/10.1002/batt.202000200 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613251786080256 |
score |
13.070432 |