Ultrafast inside‐out NMR assessment of rechargeable cells

Autores
Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; Dahn, Jeff; Jerschow, Alexej
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware.
Fil: Pigliapochi, Roberta. University of New York; Estados Unidos
Fil: Benders, Stefan. University of New York; Estados Unidos
Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Glazier, Stephen L.. Dalhousie University Halifax; Canadá
Fil: Lee, Elizabeth. Dalhousie University Halifax; Canadá
Fil: Dahn, Jeff. Dalhousie University Halifax; Canadá
Fil: Jerschow, Alexej. University of New York; Estados Unidos
Materia
NMR
BATTERIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143540

id CONICETDig_112e8c46077a57787a6911c33744d267
oai_identifier_str oai:ri.conicet.gov.ar:11336/143540
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ultrafast inside‐out NMR assessment of rechargeable cellsPigliapochi, RobertaBenders, StefanSilletta, Emilia VictoriaGlazier, Stephen L.Lee, ElizabethDahn, JeffJerschow, AlexejNMRBATTERIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware.Fil: Pigliapochi, Roberta. University of New York; Estados UnidosFil: Benders, Stefan. University of New York; Estados UnidosFil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Glazier, Stephen L.. Dalhousie University Halifax; CanadáFil: Lee, Elizabeth. Dalhousie University Halifax; CanadáFil: Dahn, Jeff. Dalhousie University Halifax; CanadáFil: Jerschow, Alexej. University of New York; Estados UnidosWiley2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143540Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; et al.; Ultrafast inside‐out NMR assessment of rechargeable cells; Wiley; Batteries & Supercaps; 4; 2; 10-2020; 322-3262566-62232566-6223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/batt.202000200info:eu-repo/semantics/altIdentifier/doi/10.1002/batt.202000200info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:33Zoai:ri.conicet.gov.ar:11336/143540instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:33.31CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ultrafast inside‐out NMR assessment of rechargeable cells
title Ultrafast inside‐out NMR assessment of rechargeable cells
spellingShingle Ultrafast inside‐out NMR assessment of rechargeable cells
Pigliapochi, Roberta
NMR
BATTERIES
title_short Ultrafast inside‐out NMR assessment of rechargeable cells
title_full Ultrafast inside‐out NMR assessment of rechargeable cells
title_fullStr Ultrafast inside‐out NMR assessment of rechargeable cells
title_full_unstemmed Ultrafast inside‐out NMR assessment of rechargeable cells
title_sort Ultrafast inside‐out NMR assessment of rechargeable cells
dc.creator.none.fl_str_mv Pigliapochi, Roberta
Benders, Stefan
Silletta, Emilia Victoria
Glazier, Stephen L.
Lee, Elizabeth
Dahn, Jeff
Jerschow, Alexej
author Pigliapochi, Roberta
author_facet Pigliapochi, Roberta
Benders, Stefan
Silletta, Emilia Victoria
Glazier, Stephen L.
Lee, Elizabeth
Dahn, Jeff
Jerschow, Alexej
author_role author
author2 Benders, Stefan
Silletta, Emilia Victoria
Glazier, Stephen L.
Lee, Elizabeth
Dahn, Jeff
Jerschow, Alexej
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv NMR
BATTERIES
topic NMR
BATTERIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware.
Fil: Pigliapochi, Roberta. University of New York; Estados Unidos
Fil: Benders, Stefan. University of New York; Estados Unidos
Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Glazier, Stephen L.. Dalhousie University Halifax; Canadá
Fil: Lee, Elizabeth. Dalhousie University Halifax; Canadá
Fil: Dahn, Jeff. Dalhousie University Halifax; Canadá
Fil: Jerschow, Alexej. University of New York; Estados Unidos
description Rechargeable battery cells are notoriously difficult to analyze. Conductive casings and the close spacing between electrode layers prevent the penetration of radiofrequency into the active compartment, and thus preclude direct nuclear magnetic resonance studies of cells unless they are specifically designed for such studies. Recently, an inside‐out magnetic resonance imaging (MRI) method was developed that allowed measuring the magnetic field distributions in the volume surrounding the cells, and inferring internal parameters, such as the state of charge and current distributions. While the imaging approach provides a potentially very detailed picture of internal mechanisms, it can often be sensitive to background gradients and can be slow. In this work, an alternative approach is presented, which is based on the acquisition of free induction decays in the sample volume surrounding the cells. The signals encode intrinsic battery properties via the induced magnetic fields from the battery materials. A large range of cells were studied with different cathode materials, electrolyte amounts and cycle numbers (age). The spectroscopic signatures from these studies are shown to provide strong classification power for cathode materials. In addition, the derived principal components follow distinct pathways as a function of state of charge. The method is simple and fast (completes in less than a second), and requires only minimal hardware.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143540
Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; et al.; Ultrafast inside‐out NMR assessment of rechargeable cells; Wiley; Batteries & Supercaps; 4; 2; 10-2020; 322-326
2566-6223
2566-6223
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143540
identifier_str_mv Pigliapochi, Roberta; Benders, Stefan; Silletta, Emilia Victoria; Glazier, Stephen L.; Lee, Elizabeth; et al.; Ultrafast inside‐out NMR assessment of rechargeable cells; Wiley; Batteries & Supercaps; 4; 2; 10-2020; 322-326
2566-6223
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/batt.202000200
info:eu-repo/semantics/altIdentifier/doi/10.1002/batt.202000200
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613251786080256
score 13.070432