Canopy Light Signals and Crop Yield in Sickness and in Health
- Autores
- Casal, Jorge Jose
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Crop management decisions such as sowing density, row distance and orientation, choice of cultivar, and weed control define the architecture of the canopy, which in turn affects the light environment experienced by crop plants. Phytochromes, cryptochromes, phototropins, and the UV-B photoreceptor UVR8 are sensory photoreceptors able to perceive specific light signals that provide information about the dynamic status of canopy architecture. These signals include the low irradiance (indicating that not all the effects of irradiance occur via photosynthesis) and low red/far-red ratio typical of dense stands. The simulation of selected signals of canopy shade light and/or the analysis of photoreceptor mutants have revealed that canopy light signals exert significant influence on plant performance. The main effects of the photoreceptors include the control of (a) the number and position of the leaves and their consequent capacity to intercept light, via changes in stem height, leaf orientation, and branching; (b) the photosynthetic capacity of green tissues, via stomatic and nonstomatic actions; (c) the investment of captured resources into harvestable organs; and (d) the plant defences against herbivores and pathogens. Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops.
Fil: Casal, Jorge Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Fundación Instituto Leloir; Argentina - Materia
-
Shade
Crop yield
Light
Photonorphogenesis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4047
Ver los metadatos del registro completo
id |
CONICETDig_0ff91b0da0c61b35a6ec07556c1ebc4b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4047 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Canopy Light Signals and Crop Yield in Sickness and in HealthCasal, Jorge JoseShadeCrop yieldLightPhotonorphogenesishttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Crop management decisions such as sowing density, row distance and orientation, choice of cultivar, and weed control define the architecture of the canopy, which in turn affects the light environment experienced by crop plants. Phytochromes, cryptochromes, phototropins, and the UV-B photoreceptor UVR8 are sensory photoreceptors able to perceive specific light signals that provide information about the dynamic status of canopy architecture. These signals include the low irradiance (indicating that not all the effects of irradiance occur via photosynthesis) and low red/far-red ratio typical of dense stands. The simulation of selected signals of canopy shade light and/or the analysis of photoreceptor mutants have revealed that canopy light signals exert significant influence on plant performance. The main effects of the photoreceptors include the control of (a) the number and position of the leaves and their consequent capacity to intercept light, via changes in stem height, leaf orientation, and branching; (b) the photosynthetic capacity of green tissues, via stomatic and nonstomatic actions; (c) the investment of captured resources into harvestable organs; and (d) the plant defences against herbivores and pathogens. Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops.Fil: Casal, Jorge Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Fundación Instituto Leloir; ArgentinaHindawi Publishing Corporation2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4047Casal, Jorge Jose; Canopy Light Signals and Crop Yield in Sickness and in Health; Hindawi Publishing Corporation; ISRN Agronomy; 2013; 2-2013; 650439-6504392090-7656enginfo:eu-repo/semantics/altIdentifier/url/http://www.hindawi.com/journals/isrn/2013/650439/info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1155/2013/650439info:eu-repo/semantics/altIdentifier/issn/2090-7656info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:26Zoai:ri.conicet.gov.ar:11336/4047instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:27.206CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Canopy Light Signals and Crop Yield in Sickness and in Health |
title |
Canopy Light Signals and Crop Yield in Sickness and in Health |
spellingShingle |
Canopy Light Signals and Crop Yield in Sickness and in Health Casal, Jorge Jose Shade Crop yield Light Photonorphogenesis |
title_short |
Canopy Light Signals and Crop Yield in Sickness and in Health |
title_full |
Canopy Light Signals and Crop Yield in Sickness and in Health |
title_fullStr |
Canopy Light Signals and Crop Yield in Sickness and in Health |
title_full_unstemmed |
Canopy Light Signals and Crop Yield in Sickness and in Health |
title_sort |
Canopy Light Signals and Crop Yield in Sickness and in Health |
dc.creator.none.fl_str_mv |
Casal, Jorge Jose |
author |
Casal, Jorge Jose |
author_facet |
Casal, Jorge Jose |
author_role |
author |
dc.subject.none.fl_str_mv |
Shade Crop yield Light Photonorphogenesis |
topic |
Shade Crop yield Light Photonorphogenesis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Crop management decisions such as sowing density, row distance and orientation, choice of cultivar, and weed control define the architecture of the canopy, which in turn affects the light environment experienced by crop plants. Phytochromes, cryptochromes, phototropins, and the UV-B photoreceptor UVR8 are sensory photoreceptors able to perceive specific light signals that provide information about the dynamic status of canopy architecture. These signals include the low irradiance (indicating that not all the effects of irradiance occur via photosynthesis) and low red/far-red ratio typical of dense stands. The simulation of selected signals of canopy shade light and/or the analysis of photoreceptor mutants have revealed that canopy light signals exert significant influence on plant performance. The main effects of the photoreceptors include the control of (a) the number and position of the leaves and their consequent capacity to intercept light, via changes in stem height, leaf orientation, and branching; (b) the photosynthetic capacity of green tissues, via stomatic and nonstomatic actions; (c) the investment of captured resources into harvestable organs; and (d) the plant defences against herbivores and pathogens. Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops. Fil: Casal, Jorge Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Fundación Instituto Leloir; Argentina |
description |
Crop management decisions such as sowing density, row distance and orientation, choice of cultivar, and weed control define the architecture of the canopy, which in turn affects the light environment experienced by crop plants. Phytochromes, cryptochromes, phototropins, and the UV-B photoreceptor UVR8 are sensory photoreceptors able to perceive specific light signals that provide information about the dynamic status of canopy architecture. These signals include the low irradiance (indicating that not all the effects of irradiance occur via photosynthesis) and low red/far-red ratio typical of dense stands. The simulation of selected signals of canopy shade light and/or the analysis of photoreceptor mutants have revealed that canopy light signals exert significant influence on plant performance. The main effects of the photoreceptors include the control of (a) the number and position of the leaves and their consequent capacity to intercept light, via changes in stem height, leaf orientation, and branching; (b) the photosynthetic capacity of green tissues, via stomatic and nonstomatic actions; (c) the investment of captured resources into harvestable organs; and (d) the plant defences against herbivores and pathogens. Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4047 Casal, Jorge Jose; Canopy Light Signals and Crop Yield in Sickness and in Health; Hindawi Publishing Corporation; ISRN Agronomy; 2013; 2-2013; 650439-650439 2090-7656 |
url |
http://hdl.handle.net/11336/4047 |
identifier_str_mv |
Casal, Jorge Jose; Canopy Light Signals and Crop Yield in Sickness and in Health; Hindawi Publishing Corporation; ISRN Agronomy; 2013; 2-2013; 650439-650439 2090-7656 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.hindawi.com/journals/isrn/2013/650439/ info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1155/2013/650439 info:eu-repo/semantics/altIdentifier/issn/2090-7656 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613248084606976 |
score |
13.070432 |